The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi

被引:179
作者
Gancedo, C [1 ]
Flores, CL [1 ]
机构
[1] Univ Autonoma Madrid, Inst Invest Biomed, CSIC, Madrid 28029, Spain
关键词
trehalose; 6-phosphate; hexokinase; glycolysis; sporulation; yeast;
D O I
10.1016/S1567-1356(03)00222-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The view of the role of trehalose in yeast has changed in the last few years. For a long time considered a reserve carbohydrate, it gained new importance when its function in the acquisition of thermotolerance was demonstrated. More recently the cellular processes in which the trehalose biosynthetic pathway has been implicated range from the control of glycolysis to sporulation and infectivity by certain fungal pathogens. There is now enough experimental evidence to conclude that trehalose 6-phosphate, an intermediate of trehalose biosynthesis, is an important metabolic regulator in such different organisms as yeasts or plants. Its inhibition of hexokinase plays a key role in the control of the glycolytic flux in Saccharomyces cerevisiae but other, likely important, sites of action are still unknown. We present examples of the phenotypes produced by mutations in the two steps of the trehalose biosynthetic pathway in different yeasts and fungi, and whenever possible examine the molecular explanations advanced to interpret them. (C) 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:351 / 359
页数:9
相关论文
共 63 条
[1]   GPD1, WHICH ENCODES GLYCEROL-3-PHOSPHATE DEHYDROGENASE, IS ESSENTIAL FOR GROWTH UNDER OSMOTIC-STRESS IN SACCHAROMYCES-CEREVISIAE, AND ITS EXPRESSION IS REGULATED BY THE HIGH-OSMOLARITY GLYCEROL RESPONSE PATHWAY [J].
ALBERTYN, J ;
HOHMANN, S ;
THEVELEIN, JM ;
PRIOR, BA .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :4135-4144
[2]   Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae [J].
Bakker, BM ;
Overkamp, KM ;
van Maris, AJA ;
Kötter, P ;
Luttik, MAH ;
van Dijken, JP ;
Pronk, JT .
FEMS MICROBIOLOGY REVIEWS, 2001, 25 (01) :15-37
[3]   SACCHAROMYCES-CARLSBERGENSIS FDP MUTANT AND FUTILE CYCLING OF FRUCTOSE 6-PHOSPHATE [J].
BANUELOS, M ;
FRAENKEL, DG .
MOLECULAR AND CELLULAR BIOLOGY, 1982, 2 (08) :921-929
[4]   Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex [J].
Bell, W ;
Sun, WN ;
Hohmann, S ;
Wera, S ;
Reinders, A ;
De Virgilio, C ;
Wiemken, A ;
Thevelein, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (50) :33311-33319
[5]   CHARACTERIZATION OF THE 56-KDA SUBUNIT OF YEAST TREHALOSE-6-PHOSPHATE SYNTHASE AND CLONING OF ITS GENE REVEAL ITS IDENTITY WITH THE PRODUCT OF CIF1, A REGULATOR OF CARBON CATABOLITE INACTIVATION [J].
BELL, W ;
KLAASSEN, P ;
OHNACKER, M ;
BOLLER, T ;
HERWEIJER, M ;
SCHOPPINK, P ;
VANDERZEE, P ;
WIEMKEN, A .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 209 (03) :951-959
[6]   Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase [J].
Blázquez, MA ;
Santos, E ;
Flores, CL ;
Martínez-Zapater, JM ;
Salinas, J ;
Gancedo, C .
PLANT JOURNAL, 1998, 13 (05) :685-689
[7]  
BLAZQUEZ MA, 1994, J BACTERIOL, V176, P3895
[8]   Mode of action of the qcr9 and cat3 mutations in restoring the ability of Saccharomyces cerevisiae tps1 mutants to grow on glucose [J].
Blazquez, MA ;
Gancedo, C .
MOLECULAR AND GENERAL GENETICS, 1995, 249 (06) :655-664
[9]   TREHALOSE-6-PHOSPHATE, A NEW REGULATOR OF YEAST GLYCOLYSIS THAT INHIBITS HEXOKINASES [J].
BLAZQUEZ, MA ;
LAGUNAS, R ;
GANCEDO, C ;
GANCEDO, JM .
FEBS LETTERS, 1993, 329 (1-2) :51-54
[10]   IDENTIFICATION OF EXTRAGENIC SUPPRESSORS OF THE CIF1 MUTATION IN SACCHAROMYCES-CEREVISIAE [J].
BLAZQUEZ, MA ;
GANCEDO, C .
CURRENT GENETICS, 1994, 25 (02) :89-94