Using density functional theory to design DNA base analogues with low oxidation potentials

被引:83
作者
Baik, MH
Silverman, JS
Yang, IV
Ropp, PA
Szalai, VA
Yang, WT
Thorp, HH
机构
[1] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
[2] Duke Univ, Dept Chem, Durham, NC 27708 USA
关键词
D O I
10.1021/jp010643g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The oxidizability of substituted nucleobases was evaluated through theoretical calculations and the ability of individual bases to induce current enhancement in the cyclic voltammograms of metal complexes. Formation of the guanine derivatives 7-deazaguanine and 8-oxoguanine is known to lower the energy for oxidation of guanine. The similar derivatives of adenine were examined and gave lower predicted redox energies as well as current enhancement with Ru(bpy)(3)(2+) (7-deazaadenine) and Fe(bpy)(3)(2+) (8-oxoadenine). Oxidizable, substituted pyrimidines were identified using a computational library that gave 5-aminocytosine and 5-aminouracil as promising electron donors. Again, these predictions were verified using catalytic electrochemistry. In addition, the computations predicted that 6-aminocytosine would be redox-active but not as easily oxidized as 5-aminocytosine, which was also confirmed experimentally. In addition to calculating the relative one-electron redox potentials, we used calculations to evaluate the loss of a proton that occurs from the initially formed radical cation. These calculations gave results consistent with the experiments, and in the case of 8-oxoadenine, the relative redox reactivity could be predicted only when the proton loss step was considered. These substituted bases constitute building blocks for highly redox-active nucleic acids, and the associated theoretical model provides powerful predictability for designing new redox-active nucleobases.
引用
收藏
页码:6437 / 6444
页数:8
相关论文
共 76 条
[1]   Modification of indium tin oxide electrodes with nucleic acids: Detection of attomole quantities of immobilized DNA by electrocatalysis [J].
Armistead, PM ;
Thorp, HH .
ANALYTICAL CHEMISTRY, 2000, 72 (16) :3764-3770
[2]   Density functional theory study of redox pairs. 1. Dinuclear iron complexes that undergo multielectron redox reactions accompanied by a reversible structural change [J].
Baik, MH ;
Ziegler, T ;
Schauer, CK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (38) :9143-9154
[3]  
Bard A. J., 1980, ELECTROCHEMICAL METH
[4]   Electron affinities of substituted p-benzoquinones from hybrid Hartree-Fock/Density-Functional calculations [J].
Boesch, SE ;
Grafton, AK ;
Wheeler, RA .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (24) :10083-10087
[5]   Oxidative nucleobase modifications leading to strand scission [J].
Burrows, CJ ;
Muller, JG .
CHEMICAL REVIEWS, 1998, 98 (03) :1109-1151
[6]   INCORPORATING SOLVATION EFFECTS INTO DENSITY-FUNCTIONAL ELECTRONIC-STRUCTURE CALCULATIONS [J].
CHEN, JL ;
NOODLEMAN, L ;
CASE, DA ;
BASHFORD, D .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (43) :11059-11068
[7]   Theoretical study of X-H bond energetics (X = C, N, O, S): Application to substituent effects, gas phase acidities, and redox potentials [J].
DiLabio, GA ;
Pratt, DA ;
LoFaro, AD ;
Wright, JS .
JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (11) :1653-1661
[8]   Electrical conduction through DNA molecules [J].
Fink, HW ;
Schönenberger, C .
NATURE, 1999, 398 (6726) :407-410
[9]   STUDIES ON 5-AMINODEOXYURIDINE [J].
FRIEDLAND, M ;
VISSER, DW .
BIOCHIMICA ET BIOPHYSICA ACTA, 1961, 51 (01) :148-&
[10]   A MOLECULAR ORBITAL THEORY OF REACTIVITY IN AROMATIC HYDROCARBONS [J].
FUKUI, K ;
YONEZAWA, T ;
SHINGU, H .
JOURNAL OF CHEMICAL PHYSICS, 1952, 20 (04) :722-725