Solution structure of human cofilin -: Actin binding, pH sensitivity, and relationship to actin-depolymerizing factor

被引:113
作者
Pope, BJ
Zierler-Gould, KM
Kühne, R
Weeds, AG
Ball, LJ
机构
[1] MRC, Mol Biol Lab, Cambridge CB2 2QH, England
[2] Forschungsinst Mol Pharmakol, D-13125 Berlin, Germany
关键词
D O I
10.1074/jbc.M310148200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human actin-depolymerizing factor (ADF) and cofilin are pH-sensitive, actin-depolymerizing proteins. Although 72% identical in sequence, ADF has a much higher depolymerizing activity than cofilin at pH 8. To understand this, we solved the structure of human cofilin using nuclear magnetic resonance and compared it with human ADF. Important sequence differences between vertebrate ADF/cofilins were correlated with unique structural determinants in the F-actin-binding site to account for differences in biochemical activities of the two proteins. Cofilin has a short beta-strand at the C terminus, not found in ADF, which packs against strands beta3/beta4, changing the environment around Lys(96), a residue essential for F-actin binding. A salt bridge involving His(133) and Asp(98) (Glu(98) in ADF) may explain the pH sensitivity of human cofilin and ADF; these two residues are fully conserved in vertebrate ADF/cofilins. Chemical shift perturbations identified residues that (i) differ in their chemical environments between wild type cofilin and mutants S3D, which has greatly reduced G-actin binding, and K96Q, which does not bind F-actin; (ii) are affected when G-actin binds cofilin; and (iii) are affected by pH change from 6 to 8. Many residues affected by G-actin binding also show perturbation in the mutants or in response to pH. Our evidence suggests the involvement of residues 133-138 of strand beta5 in all of the activities examined. Because residues in beta5 are perturbed by mutations that affect both G-actin and F-actin binding, this strand forms a "boundary" or "bridge" between the proposed F- and G-actin-binding sites.
引用
收藏
页码:4840 / 4848
页数:9
相关论文
共 52 条
[1]   REACTIVATION OF PHOSPHORYLATED ACTIN DEPOLYMERIZING FACTOR AND IDENTIFICATION OF THE REGULATORY SITE [J].
AGNEW, BJ ;
MINAMIDE, LS ;
BAMBURG, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (29) :17582-17587
[2]   Structure of the chromatin binding (chromo) domain from mouse modifier protein 1 [J].
Ball, LJ ;
Murzina, NV ;
Broadhurst, RW ;
Raine, ARC ;
Archer, SJ ;
Stott, FJ ;
Murzin, AG ;
Singh, PB ;
Domaille, PJ ;
Laue, ED .
EMBO JOURNAL, 1997, 16 (09) :2473-2481
[3]   Proteins of the ADF/cofilin family: Essential regulators of actin dynamics [J].
Bamburg, JR .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1999, 15 :185-230
[4]  
Bernstein BW, 2000, CELL MOTIL CYTOSKEL, V47, P319, DOI 10.1002/1097-0169(200012)47:4<319::AID-CM6>3.0.CO
[5]  
2-I
[6]   Phosphorylation of Acanthamoeba actophorin (ADF/cofilin) blocks interaction with actin without a change in atomic structure [J].
Blanchoin, L ;
Robinson, RC ;
Choe, S ;
Pollard, TD .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 295 (02) :203-211
[7]   A structural basis for the pH-dependence of cofilin - F-actin interactions [J].
Blondin, L ;
Sapountzi, V ;
Maciver, SK ;
Lagarrigue, E ;
Benyamin, Y ;
Roustan, C .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (17) :4194-4201
[8]   Structural effects of cofilin on longitudinal contacts in F-actin [J].
Bobkov, AA ;
Muhlrad, A ;
Kokabi, K ;
Vorobiev, S ;
Almo, SC ;
Reisler, E .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 323 (04) :739-750
[9]  
Bowman GD, 2000, PROTEINS, V41, P374, DOI 10.1002/1097-0134(20001115)41:3<374::AID-PROT90>3.0.CO
[10]  
2-F