Hamiltonian formulation of the W1+∞ minimal models

被引:19
作者
Cappelli, A
Zemba, GR
机构
[1] Ist Nazl Fis Nucl, I-50125 Florence, Italy
[2] Dipartimento Fis, I-50125 Florence, Italy
[3] Comis Nacl Energia Atom, Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[4] Comis Nacl Energia Atom, Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[5] Univ Nacl Cuyo, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
关键词
quantum Hall effect; conformal field theory; W-algebra;
D O I
10.1016/S0550-3213(98)00785-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The W1+infinity minimal models are conformal field theories which can describe the edge excitations of the hierarchical plateaus in the quantum Hall effect. In this paper, these models are described in very explicit terms by using a bosonic Fock space with constraints, or, equivalently, with a non-trivial Hamiltonian. The Fock space is that of the multi-component abelian conformal theories, which provide another possible description of the hierarchical plateaus; in this space, the minimal models are shown to correspond to the sub-set of states which satisfy the constraints. This reduction of degrees of freedom can also be implemented by adding a relevant interaction to the Hamiltonian, leading to a renormalization-group flow between the two theories. Next, a physical interpretation of the constraints is obtained by representing the quantum incompressible Hall fluids as generalized Fermi seas. Finally, the non-abelian statistics of the quasi-particles in the W1+infinity minimal models is described by computing their correlation functions in the Coulomb gas approach. (C) 1999 Elsevier Science B.V.
引用
收藏
页码:610 / 638
页数:29
相关论文
共 61 条
[1]  
ALVAREZGAUME L, 1990, TOPICS CONFORMAL FIE
[2]   EDGE MAGNETOPLASMONS IN THE TIME DOMAIN [J].
ASHOORI, RC ;
STORMER, HL ;
PFEIFFER, LN ;
BALDWIN, KW ;
WEST, K .
PHYSICAL REVIEW B, 1992, 45 (07) :3894-3897
[3]  
AWATA H, 1995, PROG THEOR PHYS SUPP, P343, DOI 10.1143/PTPS.118.343
[4]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[5]   SPINONS IN CONFORMAL FIELD-THEORY [J].
BERNARD, D ;
PASQUIER, V ;
SERBAN, D .
NUCLEAR PHYSICS B, 1994, 428 (03) :612-628
[6]   CONFORMAL FIELD-THEORIES VIA HAMILTONIAN REDUCTION [J].
BERSHADSKY, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 139 (01) :71-82
[7]   SPINON BASES, YANGIAN SYMMETRY AND FERMIONIC REPRESENTATIONS OF VIRASORO CHARACTERS IN CONFORMAL FIELD-THEORY [J].
BOUWKNEGT, P ;
LUDWIG, AWW ;
SCHOUTENS, K .
PHYSICS LETTERS B, 1994, 338 (04) :448-456
[8]   Modular invariant partition functions in the quantum Hall effect [J].
Cappelli, A ;
Zemba, GR .
NUCLEAR PHYSICS B, 1997, 490 (03) :595-632
[9]   W-1+infinity dynamics of edge excitations in the quantum hall effect [J].
Cappelli, A ;
Trugenberger, CA ;
Zemba, GR .
ANNALS OF PHYSICS, 1996, 246 (01) :86-120
[10]   Numerical study of hierarchical quantum Hall edge states in the disk geometry [J].
Cappelli, A ;
Méndez, C ;
Simonin, J ;
Zemba, GR .
PHYSICAL REVIEW B, 1998, 58 (24) :16291-16304