The crystal structure of pectate lyase Pel9A from Erwinia chrysanthemi

被引:69
作者
Jenkins, J
Shevchik, VE
Hugouvieux-Cotte-Pattat, N
Pickersgill, RW
机构
[1] Univ London, Queen Mary, Sch Biol Sci, London E1 4NS, England
[2] Univ Lyon 1, CNRS, UMR 5122, Unite Microbiol & Genet, F-69622 Villeurbanne, France
[3] Inst Food Res, Norwich NR4 7UA, Norfolk, England
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1074/jbc.M311390200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The "family 9 polysaccharide lyase" pectate lyase L (Pel9A) from Erwinia chrysanthemi comprises a 10-coil parallel beta-helix domain with distinct structural features including an asparagine ladder and aromatic stack at novel positions within the superhelical structure. Pel9A has a single high affinity calcium-binding site strikingly similar to the "primary" calcium-binding site described previously for the family Pel1A pectate lyases, and there is strong evidence for a common second calcium ion that binds between enzyme and substrate in the "Michaelis" complex. Although the primary calcium ion binds substrate in subsite -1, it is the second calcium ion, whose binding site is formed by the coming together of enzyme and substrate, that facilitates abstraction of the C5 proton from the sacharride in subsite +1. The role of the second calcium is to withdraw electrons from the C6 carboxylate of the substrate, thereby acidifying the C5 proton facilitating its abstraction and resulting in an E1cb-like anti-beta-elimination mechanism. The active site geometries and mechanism of Pel1A and Pel9A are closely similar, but the catalytic base is a lysine in the Pel9A enzymes as opposed to an arginine in the Pel1A enzymes.
引用
收藏
页码:9139 / 9145
页数:7
相关论文
共 40 条
[1]   The first structure of pectate lyase belonging to polysaccharide lyase family 3 [J].
Akita, M ;
Suzuki, A ;
Kobayashi, T ;
Ito, S ;
Yamane, T .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2001, 57 :1786-1792
[2]  
Anderson VE, 1998, COMPREHENSIVE BIOL C, V2, P115
[3]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[5]   Convergent evolution sheds light on the anti-β-elimination mechanism common to family 1 and 10 polysaccharide lyases [J].
Charnock, SJ ;
Brown, IE ;
Turkenburg, JP ;
Black, GW ;
Davies, GJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (19) :12067-12072
[6]  
Coutinho PM, 1999, ROY SOC CH, P3
[7]   Phase combination and cross validation in iterated density-modification calculations [J].
Cowtan, KD ;
Main, P .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1996, 52 :43-48
[8]   An extensively modified version of MolScript that includes greatly enhanced coloring capabilities [J].
Esnouf, RM .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 1997, 15 (02) :132-+
[9]   UNDERSTANDING THE RATES OF CERTAIN ENZYME-CATALYZED REACTIONS - PROTON ABSTRACTION FROM CARBON ACIDS, ACYL-TRANSFER REACTIONS, AND DISPLACEMENT-REACTIONS OF PHOSPHODIESTERS [J].
GERLT, JA ;
GASSMAN, PG .
BIOCHEMISTRY, 1993, 32 (45) :11943-11952
[10]   UNDERSTANDING ENZYME-CATALYZED PROTON ABSTRACTION FROM CARBON ACIDS - DETAILS OF STEPWISE MECHANISMS FOR BETA-ELIMINATION REACTIONS [J].
GERLT, JA ;
GASSMAN, PG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (15) :5928-5934