Limits of time-delayed feedback control

被引:74
作者
Just, W
Reibold, E
Benner, H
Kacperski, K
Fronczak, P
Holyst, J
机构
[1] Max Planck Inst Phys Complex Syst, D-01187 Dresden, Germany
[2] Tech Univ Darmstadt, Inst Festkorperphys, D-64289 Darmstadt, Germany
[3] Warsaw Univ Technol, Inst Phys, PL-00662 Warsaw, Poland
关键词
chaos control; Pyragas method; differential-difference equation;
D O I
10.1016/S0375-9601(99)00113-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
General features of stability domains for time-delayed feedback control exist, which can be predicted analytically. We clarify, why the control scheme with a single delay term can only stabilise orbits with short periods or small Lyapunov exponents, and derive a quantitative estimate. The limitation can be relaxed by employing multiple delay terms. In particular, the extended time delay autosynchronisation method is investigated in detail, Analytic calculations are in good agreement with results of numerical simulations and with experimental data from a nonlinear diode resonator, (C) 1999 Elsevier Science B.V.
引用
收藏
页码:158 / 164
页数:7
相关论文
共 17 条
[1]  
[Anonymous], 1961, Adaptive Control Processes: a Guided Tour, DOI DOI 10.1515/9781400874668
[2]   CONTROLLING UNSTABLE PERIODIC-ORBITS BY A DELAYED CONTINUOUS FEEDBACK [J].
BIELAWSKI, S ;
DEROZIER, D ;
GLORIEUX, P .
PHYSICAL REVIEW E, 1994, 49 (02) :R971-R974
[3]   Stability of periodic orbits controlled by time-delay feedback [J].
Bleich, ME ;
Socolar, JES .
PHYSICS LETTERS A, 1996, 210 (1-2) :87-94
[4]  
COLLATZ L, 1947, Z ANGEW MATH MECH, V25, P60
[5]   STABILIZING UNSTABLE PERIODIC-ORBITS IN A FAST DIODE RESONATOR USING CONTINUOUS TIME-DELAY AUTOSYNCHRONIZATION [J].
GAUTHIER, DJ ;
SUKOW, DW ;
CONCANNON, HM ;
SOCOLAR, JES .
PHYSICAL REVIEW E, 1994, 50 (03) :2343-2346
[6]  
Hale J. K., 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7
[7]   Delayed feedback control of periodic orbits in autonomous systems [J].
Just, W ;
Reckwerth, D ;
Mockel, J ;
Reibold, E ;
Benner, H .
PHYSICAL REVIEW LETTERS, 1998, 81 (03) :562-565
[8]   Mechanism of time-delayed feedback control [J].
Just, W ;
Bernard, T ;
Ostheimer, M ;
Reibold, E ;
Benner, H .
PHYSICAL REVIEW LETTERS, 1997, 78 (02) :203-206
[9]   DELAYED FEEDBACK-CONTROL OF CHAOS BY SELF-ADAPTED DELAY-TIME [J].
KITTEL, A ;
PARISI, J ;
PYRAGAS, K .
PHYSICS LETTERS A, 1995, 198 (5-6) :433-436
[10]   On analytical properties of delayed feedback control of chaos [J].
Nakajima, H .
PHYSICS LETTERS A, 1997, 232 (3-4) :207-210