Noncontinuous Froude number scaling for the closure depth of a cylindrical cavity

被引:43
作者
Gekle, Stephan [1 ]
van der Bos, Arjan
Bergmann, Raymond
van der Meer, Devaraj
Lohse, Detlef
机构
[1] Univ Twente, Phys Fluids Grp, NL-7500 AE Enschede, Netherlands
关键词
D O I
10.1103/PhysRevLett.100.084502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A long, smooth cylinder is dragged through a water surface to create a cavity with an initially cylindrical shape. This surface void then collapses due to the hydrostatic pressure, leading to a rapid and axisymmetric pinch-off in a single point. Surprisingly, the depth at which this pinch-off takes place does not follow the expected Froude(1/3) power law. Instead, it displays two distinct scaling regimes separated by discrete jumps, both in experiment and in numerical simulations (employing a boundary integral code). We quantitatively explain the above behavior as a capillary wave effect. These waves are created when the top of the cylinder passes the water surface. Our work thus gives further evidence for the nonuniversality of the void collapse.
引用
收藏
页数:4
相关论文
共 17 条
[1]  
[Anonymous], 1987, Dimensional analysis
[2]   Universal properties of three-dimensional magnetohydrodynamic turbulence: do Alfven waves matter? [J].
Basu, A ;
Bhattacharjee, JK .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :18-33
[3]   Giant bubble pinch-off [J].
Bergmann, R ;
van der Meer, D ;
Stijnman, M ;
Sandtke, M ;
Prosperetti, A ;
Lohse, D .
PHYSICAL REVIEW LETTERS, 2006, 96 (15)
[4]   ITERATED INSTABILITIES DURING DROPLET FISSION [J].
BRENNER, MP ;
SHI, XD ;
NAGEL, SR .
PHYSICAL REVIEW LETTERS, 1994, 73 (25) :3391-3394
[5]   Scaling and instabilities in bubble pinch-off [J].
Burton, JC ;
Waldrep, R ;
Taborek, P .
PHYSICAL REVIEW LETTERS, 2005, 94 (18)
[6]   An experimental study of the turbulence statistics in a lagoon [J].
Cioffi, Francesco ;
Gallerano, Francesco ;
Troiani, Guido .
JOURNAL OF HYDRAULIC RESEARCH, 2006, 44 (02) :155-169
[7]   Persistence of memory in drop breakup: The breakdown of universality [J].
Doshi, P ;
Cohen, I ;
Zhang, WW ;
Siegel, M ;
Howell, P ;
Basaran, OA ;
Nagel, SR .
SCIENCE, 2003, 302 (5648) :1185-1188
[8]   Dynamics of transient cavities [J].
Duclaux, V. ;
Caille, F. ;
Duez, C. ;
Ybert, C. ;
Bocquet, L. ;
Clanet, C. .
JOURNAL OF FLUID MECHANICS, 2007, 591 :1-19
[9]   Theory of the collapsing axisymmetric cavity [J].
Eggers, J. ;
Fontelos, M. A. ;
Leppinen, D. ;
Snoeijer, J. H. .
PHYSICAL REVIEW LETTERS, 2007, 98 (09)
[10]   Nonlinear dynamics and breakup of free-surface flows [J].
Eggers, J .
REVIEWS OF MODERN PHYSICS, 1997, 69 (03) :865-929