Hippocampal synaptic plasticity in streptozotocin-diabetic rats: Impairment of long-term potentiation and facilitation of long-term depression

被引:152
作者
Kamal, A [1 ]
Biessels, GJ [1 ]
Urban, IJA [1 ]
Gispen, WH [1 ]
机构
[1] Univ Utrecht, Rudolf Magnus Inst Neurosci, Dept Med Pharmacol, NL-3508 TA Utrecht, Netherlands
关键词
diabetes mellitus; cerebral complications; long-term potentiation; long-term depression; hippocampus;
D O I
10.1016/S0306-4522(98)00485-0
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Streptozotocin-diabetic rats, an animal model for diabetes mellitus, show learning deficits and impaired long-term potentiation in the CA1-field of the hippocampus. The present study aimed to further characterize the effects of streptozotocin-diabetes on N-methyl-D-aspartate receptor-dependent long-term potentiation in the CA1-field, to extend these findings to N-methyl-D-aspartate receptor-dependent and independent long-term potentiation in other regions of the hippocampus and to examine effects on longterm depression. First, the effect of diabetes duration on long-term potentiation in the CA1-field was determined. A progressive deficit was observed after a diabetes duration of six to eight weeks, which reached a maximum after 12 weeks of diabetes and remained stable thereafter. Next, long-term potentiation was examined in the dentate gyms and in the GAS-field after 12 weeks of diabetes. Both were found to be impaired compared to controls. Finally, long-term depression was examined in the CA1-field of the hippocampus after 12 weeks of diabetes and found to be enhanced in slices from diabetic rats compared to controls. Changes in synaptic plasticity were observed in hippocampal slices from streptozotocin-diabetic rats. Expression of N-methyl-D-aspartate receptor-dependent long-term potentiation was impaired in the CA1-field and dentate gyrus and expression of N-methyl-D-aspartate receptor-independent long-term potentiation was impaired in the CA3-field. In contrast, expression of long-term depression was facilitated in CA1. It is suggested that this combination of changes in plasticity may reflect alterations in intracellular signalling pathways. (C) 1999 IBRO. Published by Elsevier Science Ltd.
引用
收藏
页码:737 / 745
页数:9
相关论文
共 30 条
[1]   MRI OF THE BRAIN IN DIABETES-MELLITUS [J].
ARAKI, Y ;
NOMURA, M ;
TANAKA, H ;
YAMAMOTO, H ;
YAMAMOTO, T ;
TSUKAGUCHI, I ;
NAKAMURA, H .
NEURORADIOLOGY, 1994, 36 (02) :101-103
[2]   LONG-TERM DEPRESSION OF EXCITATORY SYNAPTIC TRANSMISSION AND ITS RELATIONSHIP TO LONG-TERM POTENTIATION [J].
ARTOLA, A ;
SINGER, W .
TRENDS IN NEUROSCIENCES, 1993, 16 (11) :480-487
[3]   DIFFERENT VOLTAGE-DEPENDENT THRESHOLDS FOR INDUCING LONG-TERM DEPRESSION AND LONG-TERM POTENTIATION IN SLICES OF RAT VISUAL-CORTEX [J].
ARTOLA, A ;
BROCHER, S ;
SINGER, W .
NATURE, 1990, 347 (6288) :69-72
[4]   Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation [J].
Barria, A ;
Muller, D ;
Derkach, V ;
Griffith, LC ;
Soderling, TR .
SCIENCE, 1997, 276 (5321) :2042-2045
[5]   MECHANISM FOR A SLIDING SYNAPTIC MODIFICATION THRESHOLD [J].
BEAR, MF .
NEURON, 1995, 15 (01) :1-4
[6]   The calcium hypothesis of brain aging and neurodegenerative disorders: Significance in diabetic neuropathy [J].
Biessels, G ;
Gispen, WH .
LIFE SCIENCES, 1996, 59 (5-6) :379-387
[7]   Place learning and hippocampal synaptic plasticity in streptozotocin-Induced diabetic rats [J].
Biessels, GJ ;
Kamal, A ;
Ramakers, GM ;
Urban, IJ ;
Spruijt, BM ;
Erkelens, DW ;
Gispen, WH .
DIABETES, 1996, 45 (09) :1259-1266
[8]   CEREBRAL FUNCTION IN DIABETES-MELLITUS [J].
BIESSELS, GJ ;
KAPPELLE, AC ;
BRAVENBOER, B ;
ERKELENS, DW ;
GISPEN, WH .
DIABETOLOGIA, 1994, 37 (07) :643-650
[9]   A SYNAPTIC MODEL OF MEMORY - LONG-TERM POTENTIATION IN THE HIPPOCAMPUS [J].
BLISS, TVP ;
COLLINGRIDGE, GL .
NATURE, 1993, 361 (6407) :31-39
[10]  
CANDY SM, 1997, J PHYSIOL-LONDON, V504, P184