Eigenvector approximation leading to exponential speedup of quantum eigenvalue calculation

被引:24
作者
Jaksch, P [1 ]
Papageorgiou, A [1 ]
机构
[1] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
关键词
Quantum computers - Quantum phase estimation;
D O I
10.1103/PhysRevLett.91.257902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an efficient method for preparing the initial state required by the eigenvalue approximation quantum algorithm of Abrams and Lloyd. Our method can be applied when solving continuous Hermitian eigenproblems, e.g., the Schrodinger equation, on a discrete grid. We start with a classically obtained eigenvector for a problem discretized on a coarse grid, and we efficiently construct, quantum mechanically, an approximation of the same eigenvector on a fine grid. We use this approximation as the initial state for the eigenvalue estimation algorithm, and show the relationship between its success probability and the size of the coarse grid.
引用
收藏
页码:2579021 / 2579024
页数:4
相关论文
共 6 条
[1]   Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5162-5165
[2]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[3]  
Babuska I., 1991, Finite Element Methods, V2, P641
[4]  
Brassard G., 2000, QUANTUM COMPUTATION, V305, P53, DOI [DOI 10.1090/CONM/305/05215, 10.1090/conm/305/05215]
[5]   Universal quantum simulators [J].
Lloyd, S .
SCIENCE, 1996, 273 (5278) :1073-1078
[6]   Simulating quantum systems on a quantum computer [J].
Zalka, C .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1969) :313-322