A current review of fatty acid transport proteins (SLC27)

被引:251
作者
Stahl, A [1 ]
机构
[1] Palo Alto Med Fdn, Res Inst, Palo Alto, CA 94301 USA
来源
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY | 2004年 / 447卷 / 05期
关键词
fatty acid transport proteins; FATP; solute carrier family 27; fatty acid uptake; metabolism;
D O I
10.1007/s00424-003-1106-z
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Long-chain fatty acids (LCFAs) are not only important metabolites but contribute to many cellular functions including activation of protein kinase C (PKC) isoforms and nuclear transcription factors such as peroxisome proliferator-activated receptors (PPAPs). To assert their diverse effects LCFAs have first to traverse the plasma membrane, a process that can occur either through diffusion or be mediated by proteins. Considerable evidence has accumulated to show that in addition to a diffusional component, the intestine, heart, adipose tissue, and the liver express a saturable and specific LCFA transport system. Identifying the postulated fatty acid transporters is of considerable importance, since both increased and decreased fatty acid uptake have been implicated in diseases such as type-2 diabetes and acute liver failure. Fatty acid transport proteins (FATPs/solute carrier family 27) are integral transmembrane proteins that enhance the uptake of long-chain and very long chain fatty acids into cells. In humans FATPs comprise a family of six highly homologous proteins, hsFATP1-6, which are found in all fatty acid-utilizing tissues of the body. This review will focus on a brief discussion of FATP expression patterns, regulation, structure, and mechanism of transport.
引用
收藏
页码:722 / 727
页数:6
相关论文
共 47 条
[1]  
Abumrad N, 1998, J LIPID RES, V39, P2309
[2]   cDNA cloning and mRNA distribution of a mouse very long-chain acyl-CoA synthetase [J].
Berger, J ;
Truppe, C ;
Neumann, H ;
Forss-Petter, S .
FEBS LETTERS, 1998, 425 (02) :305-309
[3]   A novel relative of the very-long-chain Acyl-CoA synthetase and fatty acid transporter protein genes with a distinct expression pattern [J].
Berger, J ;
Truppe, C ;
Neumann, H ;
Forss-Petter, S .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 247 (02) :255-260
[4]   Fatty acid transport protein-1 mRNA expression in skeletal muscle and in adipose tissue in humans [J].
Binnert, C ;
Koistinen, HA ;
Martin, GV ;
Andreelli, F ;
Ebeling, P ;
Koivisto, VA ;
Laville, M ;
Auwerx, J ;
Vidal, H .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2000, 279 (05) :E1072-E1079
[5]   A novel mouse model of lipotoxic cardiomyopathy [J].
Chiu, HC ;
Kovacs, A ;
Ford, DA ;
Hsu, FF ;
Garcia, R ;
Herrero, P ;
Saffitz, JE ;
Schaffer, JE .
JOURNAL OF CLINICAL INVESTIGATION, 2001, 107 (07) :813-822
[6]   Role of CD36 in membrane transport and utilization of long-chain fatty acids by different tissues [J].
Coburn, CT ;
Hajri, T ;
Ibrahimi, A ;
Abumrad, NA .
JOURNAL OF MOLECULAR NEUROSCIENCE, 2001, 16 (2-3) :117-121
[7]   The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase [J].
Coe, NR ;
Smith, AJ ;
Frohnert, BI ;
Watkins, PA ;
Bernlohr, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (51) :36300-36304
[8]   Long-chain fatty acid transport in bacteria and yeast. Paradigms for defining the mechanism underlying this protein-mediated process [J].
DiRusso, CC ;
Black, PN .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 1999, 192 (1-2) :41-52
[9]   Disruption of the Saccharomyces cerevisiae homologue to the murine fatty acid transport protein impairs uptake and growth on long-chain fatty acids [J].
Faergeman, NJ ;
DiRusso, CC ;
Elberger, A ;
Knudsen, J ;
Black, PN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (13) :8531-8538
[10]   A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism [J].
Febbraio, M ;
Abumrad, NA ;
Hajjar, DP ;
Sharma, K ;
Cheng, WL ;
Pearce, SFA ;
Silverstein, RL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (27) :19055-19062