Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus

被引:139
作者
Hawkes, Christine V. [1 ]
Hartley, Iain P. [2 ]
Ineson, Phil [3 ]
Fitter, Alastair H. [3 ]
机构
[1] Univ Texas Austin, Sect Integrat Biol, Austin, TX 78712 USA
[2] Univ Stirling, Sch Biol & Environm Sci, Stirling FK9 4LA, Scotland
[3] Univ York, Dept Biol, York YO10 5DD, N Yorkshire, England
关键词
C-13 pulse label; carbon cycle; climate change; extraradical mycelia; Plantago lanceolata; root length colonization; soil respiration;
D O I
10.1111/j.1365-2486.2007.01535.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
How soil carbon balance will be affected by plant-mycorrhizal interactions under future climate scenarios remains a significant unknown in our ability to forecast ecosystem carbon storage and fluxes. We examined the effects of soil temperature (14, 20, 26 degrees C) on the structure and extent of a multispecies community of arbuscular mycorrhizal (AM) fungi associated with Plantago lanceolata. To isolate fungi from roots, we used a mesh-divided pot system with separate hyphal compartments near and away from the plant. A C-13 pulse label was then used to trace the flow of recently fixed photosynthate from plants into belowground pools and respiration. Temperature significantly altered the structure and allocation of the AM hyphal network, with a switch from more vesicles (storage) in cooled soils to more extensive extraradical hyphal networks (growth) in warmed soils. As soil temperature increased, we also observed an increase in the speed at which plant photosynthate was transferred to and respired by roots and AM fungi coupled with an increase in the amount of carbon respired per unit hyphal length. These differences were largely independent of plant size and rates of photosynthesis. In a warmer world, we would therefore expect more carbon losses to the atmosphere from AM fungal respiration, which are unlikely to be balanced by increased growth of AM fungal hyphae.
引用
收藏
页码:1181 / 1190
页数:10
相关论文
共 44 条
[1]   Taking mycocentrism seriously:: mycorrhizal fungal and plant responses to elevated CO2 [J].
Alberton, O ;
Kuyper, TW ;
Gorissen, A .
NEW PHYTOLOGIST, 2005, 167 (03) :859-868
[2]  
[Anonymous], 1994, PRACTICAL METHODS MY
[3]   Variation in the degree of coupling between δ13C of phloem sap and ecosystem respiration in two mature Nothofagus forests [J].
Barbour, MM ;
Hunt, JE ;
Dungan, RJ ;
Turnbull, MH ;
Brailsford, GW ;
Farquhar, GD ;
Whitehead, D .
NEW PHYTOLOGIST, 2005, 166 (02) :497-512
[4]  
Batjes NH, 1996, EUR J SOIL SCI, V47, P151, DOI [10.1111/j.1365-2389.1996.tb01386.x, 10.1111/ejss.12114_2]
[5]   Carbon losses from all soils across England and Wales 1978-2003 [J].
Bellamy, PH ;
Loveland, PJ ;
Bradley, RI ;
Lark, RM ;
Kirk, GJD .
NATURE, 2005, 437 (7056) :245-248
[6]   How uncertainties in future climate change predictions translate into future terrestrial carbon fluxes [J].
Berthelot, M ;
Friedlingstein, P ;
Ciais, P ;
Dufresne, JL ;
Monfray, P .
GLOBAL CHANGE BIOLOGY, 2005, 11 (06) :959-970
[7]   A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics [J].
Bonan, GB ;
Levis, S ;
Sitch, S ;
Vertenstein, M ;
Oleson, KW .
GLOBAL CHANGE BIOLOGY, 2003, 9 (11) :1543-1566
[8]   CHLOROFORM FUMIGATION AND THE RELEASE OF SOIL-NITROGEN - A RAPID DIRECT EXTRACTION METHOD TO MEASURE MICROBIAL BIOMASS NITROGEN IN SOIL [J].
BROOKES, PC ;
LANDMAN, A ;
PRUDEN, G ;
JENKINSON, DS .
SOIL BIOLOGY & BIOCHEMISTRY, 1985, 17 (06) :837-842
[9]   Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi [J].
Driver, JD ;
Holben, WE ;
Rillig, MC .
SOIL BIOLOGY & BIOCHEMISTRY, 2005, 37 (01) :101-106
[10]   Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions [J].
Ekblad, A ;
Boström, B ;
Holm, A ;
Comstedt, D .
OECOLOGIA, 2005, 143 (01) :136-142