Phase chaos in coupled oscillators

被引:88
作者
Popovych, OV [1 ]
Maistrenko, YL
Tass, PA
机构
[1] Res Ctr Julich, Inst Med & Virtual, D-52425 Julich, Germany
[2] Res Ctr Julich, Inst Neuromodulat, D-52425 Julich, Germany
[3] Res Ctr Julich, Cent Inst Elect, D-52425 Julich, Germany
[4] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
[5] Univ Hosp, Dept Stereotax & Funct Neurosurg, D-50924 Cologne, Germany
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 06期
关键词
D O I
10.1103/PhysRevE.71.065201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A complex high-dimensional chaotic behavior, phase chaos, is found in the finite-dimensional Kuramoto model of coupled phase oscillators. This type of chaos is characterized by half of the spectrum of Lyapunov exponents being positive and the Lyapunov dimension equaling almost the total system dimension. Intriguingly, the strongest phase chaos occurs for intermediate-size ensembles. Phase chaos is a common property of networks of oscillators of very different natures, such as phase oscillators, limit-cycle oscillators, and chaotic oscillators, e.g., Rossler systems.
引用
收藏
页数:4
相关论文
共 37 条
  • [1] AFRAIMOVICH VS, 1991, AM MATH SOC TRANSL, V149, P176
  • [2] The world of the complex Ginzburg-Landau equation
    Aranson, IS
    Kramer, L
    [J]. REVIEWS OF MODERN PHYSICS, 2002, 74 (01) : 99 - 143
  • [3] Phase diagram for the Winfree model of coupled nonlinear oscillators
    Ariaratnam, JT
    Strogatz, SH
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (19) : 4278 - 4281
  • [4] Ashwin P, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.026203
  • [5] 3 COUPLED OSCILLATORS - MODE-LOCKING, GLOBAL BIFURCATIONS AND TOROIDAL CHAOS
    BAESENS, C
    GUCKENHEIMER, J
    KIM, S
    MACKAY, RS
    [J]. PHYSICA D, 1991, 49 (03): : 387 - 475
  • [6] THE DIMENSION OF CHAOTIC ATTRACTORS
    FARMER, JD
    OTT, E
    YORKE, JA
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1983, 7 (1-3) : 153 - 180
  • [7] DYNAMICS OF THE GLOBALLY COUPLED COMPLEX GINZBURG-LANDAU EQUATION
    HAKIM, V
    RAPPEL, WJ
    [J]. PHYSICAL REVIEW A, 1992, 46 (12): : R7347 - R7350
  • [8] Global coupling with time delay in an array of semiconductor lasers
    Kozyreff, G
    Vladimirov, AG
    Mandel, P
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (18) : 3809 - 3812
  • [9] Kuramoto Y, 2003, CHEM OSCILLATIONS WA
  • [10] Universal scaling of Lyapunov exponents in coupled chaotic oscillators -: art. no. 045203
    Liu, ZH
    Lai, YC
    Matías, MA
    [J]. PHYSICAL REVIEW E, 2003, 67 (04) : 4 - 452034