Electrical impedance of cultured endothelium under fluid flow

被引:62
作者
DePaola, N
Phelps, JE
Florez, L
Keese, CR
Minnear, FL
Giaever, I
Vincent, P
机构
[1] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Biol, Troy, NY 12180 USA
[3] Rensselaer Polytech Inst, Dept Phys, Troy, NY 12180 USA
[4] Albany Med Coll, Ctr Cardiovasc Sci, Albany, NY 12208 USA
基金
美国国家科学基金会;
关键词
endothelial cells; electrical impedance; shear stress; flow;
D O I
10.1114/1.1385811
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The morphological and functional status of organs, tissues, and cells can be assessed by evaluating their electrical impedance. Fluid shear stress regulates the morphology and function of endothelial cells in vitro. In this study, an electrical biosensor was used to investigate the dynamics of flow-induced alterations in endothelial cell morphology in vitro. Quantitative, real-time changes in the electrical impedance of endothelial monolayers were evaluated using a modified electric cell-substrate impedance sensing (ECIS) system. This ECIS/Flow system allows for a continuous evaluation of the cell monolayer impedance upon exposure to physiological fluid shear stress forces. Bovine aortic endothelial cells grown to confluence on thin film gold electrodes were exposed to fluid shear stress of 10 dynes/cm(2) for a single uninterrupted 5 h time period or for two consecutive 30 min time periods separated by a 2 h no-flow interval. At the onset of flow, the monolayer electrical resistance sharply increased reaching 1.2 to 1.3 times the baseline in about 15 min followed by a sustained decrease in resistance to 1.1 and 0.85 times the baseline value after 30 min and 5 h of flow, respectively. The capacitance decreased at the onset of flow, started to recover after 15 min and after slightly overshooting the baseline values, decreased again with a prolonged exposure to flow. Measured changes in capacitance were in the order of 5% of the baseline values. The observed changes in endothelial impedance were reversible upon flow removal with a recovery rate that varied with the duration of the preceding flow exposure. These results demonstrate that the impedance of endothelial monolayers changes dynamically with flow indicating morphological and/or functional changes in the cell layer. This in vitro model system (ECIS/Flow) may be a very useful tool in the quantitative evaluation of flow-induced dynamic changes in cultured cells when used in conjunction with biological or biochemical assays able to determine the nature and mechanisms of the observed changes. (C) 2001 Biomedical Engineering Society.
引用
收藏
页码:648 / 656
页数:9
相关论文
共 37 条
[1]   SHEAR STRESS-INDUCED REORGANIZATION OF THE SURFACE-TOPOGRAPHY OF LIVING ENDOTHELIAL-CELLS IMAGED BY ATOMIC-FORCE MICROSCOPY [J].
BARBEE, KA ;
DAVIES, PF ;
LAL, R .
CIRCULATION RESEARCH, 1994, 74 (01) :163-171
[2]   MEASUREMENT OF ALBUMIN PERMEABILITY ACROSS ENDOTHELIAL MONOLAYERS INVITRO [J].
COOPER, JA ;
DELVECCHIO, PJ ;
MINNEAR, FL ;
BURHOP, KE ;
SELIG, WM ;
GARCIA, JGN ;
MALIK, AB .
JOURNAL OF APPLIED PHYSIOLOGY, 1987, 62 (03) :1076-1083
[3]  
DAVIES PF, 1989, NEWS PHYSIOL SCI, V4, P22
[4]   MECHANICAL-STRESS MECHANISMS AND THE CELL - AN ENDOTHELIAL PARADIGM [J].
DAVIES, PF ;
TRIPATHI, SC .
CIRCULATION RESEARCH, 1993, 72 (02) :239-245
[5]   QUANTITATIVE STUDIES OF ENDOTHELIAL-CELL ADHESION - DIRECTIONAL REMODELING OF FOCAL ADHESION SITES IN RESPONSE TO FLOW FORCES [J].
DAVIES, PF ;
ROBOTEWSKYJ, A ;
GRIEM, ML .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 93 (05) :2031-2038
[6]   INFLUENCE OF HEMODYNAMIC FORCES ON VASCULAR ENDOTHELIAL FUNCTION - INVITRO STUDIES OF SHEAR-STRESS AND PINOCYTOSIS IN BOVINE AORTIC-CELLS [J].
DAVIES, PF ;
DEWEY, CF ;
BUSSOLARI, SR ;
GORDON, EJ ;
GIMBRONE, MA .
JOURNAL OF CLINICAL INVESTIGATION, 1984, 73 (04) :1121-1129
[7]   Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction [J].
Davies, PF ;
Barbee, KA ;
Volin, MV ;
Robotewskyj, A ;
Chen, J ;
Joseph, L ;
Griem, ML ;
Wernick, MN ;
Jacobs, E ;
Polacek, DC ;
DePaola, N ;
Barakat, AI .
ANNUAL REVIEW OF PHYSIOLOGY, 1997, 59 :527-549
[8]   Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro [J].
DePaola, N ;
Davies, PF ;
Pritchard, WF ;
Florez, L ;
Harbeck, N ;
Polacek, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (06) :3154-3159
[9]   VASCULAR ENDOTHELIUM RESPONDS TO FLUID SHEAR-STRESS GRADIENTS [J].
DEPAOLA, N ;
GIMBRONE, MA ;
DAVIES, PF ;
DEWEY, CF .
ARTERIOSCLEROSIS AND THROMBOSIS, 1992, 12 (11) :1254-1257
[10]   THE DYNAMIC-RESPONSE OF VASCULAR ENDOTHELIAL-CELLS TO FLUID SHEAR-STRESS [J].
DEWEY, CF ;
BUSSOLARI, SR ;
GIMBRONE, MA ;
DAVIES, PF .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1981, 103 (03) :177-185