Stable matchings and linear programming

被引:10
作者
Abeledo, H [1 ]
Blum, Y [1 ]
机构
[1] TECHNION ISRAEL INST TECHNOL,FAC IND ENGN & MANAGEMENT,IL-23000 HAIFA,ISRAEL
关键词
D O I
10.1016/0024-3795(95)00052-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper continues the work of Abeledo and Rothblum, who study nonbipartite stable matching problems from a polyhedral perspective. We establish here additional properties of fractional stable matchings and use linear programming to obtain an alternative polynomial algorithm for solving stable matching problems.
引用
收藏
页码:321 / 333
页数:13
相关论文
共 15 条
[1]   A CHARACTERIZATION OF GRAPHS THAT ENSURE THE EXISTENCE OF STABLE MATCHINGS [J].
ABELEDO, H ;
ISAAK, G .
MATHEMATICAL SOCIAL SCIENCES, 1991, 22 (01) :93-96
[2]   STABLE MATCHINGS AND LINEAR INEQUALITIES [J].
ABELEDO, HG ;
ROTHBLUM, UG .
DISCRETE APPLIED MATHEMATICS, 1994, 54 (01) :1-27
[3]  
[Anonymous], 1979, Graph Theory: An Introductory Course
[4]  
FEDER R, 1989, 21 ANN S THEOR COMP
[5]   COLLEGE ADMISSIONS AND STABILITY OF MARRIAGE [J].
GALE, D ;
SHAPLEY, LS .
AMERICAN MATHEMATICAL MONTHLY, 1962, 69 (01) :9-&
[6]  
Gusfield D., 1989, STABLE MARRIAGE PROB
[7]   AN EFFICIENT ALGORITHM FOR THE STABLE ROOMMATES PROBLEM [J].
IRVING, RW .
JOURNAL OF ALGORITHMS, 1985, 6 (04) :577-595
[8]  
KARP R, 1980, P 21 ANN S FDN COMP, P1
[9]  
Knuth D, 1976, Mariages stables
[10]  
PULLEYBLANK WR, 1983, MATH PROGRAMMING STA, P312