Differences between the sexes in overall body size and in the size of other morphological traits, relative to overall body size, are common in many animals. In this study, patterns of growth and scaling of sexually dimorphic traits are assessed in a lizard and then used to suggest general developmental mechanisms responsible for sexual size dimorphism (SSD). Adult male Uta palmeri lizards are larger than adult females in overall body size (snout-vent length, SVL), body mass,jaw length, head width, and head depth. Two general growth processes produce this adult SSD. First, juvenile males have greater annual SVL growth rates than do juvenile females, contributing to adult SSD because males will be larger than females in any trait positively correlated with SVL. Secondly, males and females differ in age-related changes in growth of the three]lead size traits, relative to growth in SVL. Comparing slopes from reduced major axis regressions of each trait on SVL reveals that the sexes do not differ in the scaling of these traits as juveniles, but as adults males have greater slopes than adult females, indicating ontogenetic differences in scaling of these traits in males. Two other topics in SSD are addressed with these data. First, comparing these data on scaling to those of an earlier analysis that used ordinary least squares regression reveals that conclusions about underlying mechanisms in an analysis of scaling can be altered by the choice of a regression model. Secondly, these data indicate that post-maturational differences in scaling contribute to adult sexual size differences, contrary to an earlier study. Shine (1990) found that for many ectotherms, which continue to grow after sexual maturation, post-maturational events contribute little to sexual differences in overall body size. Results for U. palmeri suggest that these findings may only hold for measures of overall body size (e.g. SVL) and may not generalize to traits that exhibit sex difference in scaling.