Functional MRI studies of spatial and nonspatial working memory

被引:791
作者
D'Esposito, M [1 ]
Aguirre, GK [1 ]
Zarahn, E [1 ]
Ballard, D [1 ]
Shin, RK [1 ]
Lease, J [1 ]
机构
[1] Univ Penn, Dept Neurol, Ctr Med, Philadelphia, PA 19104 USA
来源
COGNITIVE BRAIN RESEARCH | 1998年 / 7卷 / 01期
关键词
functional MRI; working memory; prefrontal cortex; spatial; nonspatial;
D O I
10.1016/S0926-6410(98)00004-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Single-unit recordings in monkeys have revealed neurons in the lateral prefrontal cortex that increase their firing during a delay between the presentation of information and its later use in behavior. Based on monkey lesion and neurophysiology studies, it has been proposed that a dorsal region of lateral prefrontal cortex is necessary for temporary storage of spatial information whereas a more ventral region is necessary for the maintenance of nonspatial information. Functional neuroimaging studies, however, have not clearly demonstrated such a division in humans. We present here an analysis of all reported human functional neuroimaging studies plotted onto a standardized brain. This analysis did not find evidence for a dorsal/ventral subdivision of prefrontal cortex depending on the type of material held in working memory, but a hemispheric organization was suggested (i.e., left-nonspatial; right-spatial). We also performed functional MRT studies in 16 normal subjects during two tasks designed to probe either nonspatial or spatial working memory, respectively. A group and subgroup analysis revealed similarly located activation in right middle frontal gyrus (Brodmann's area 46) in both spatial and nonspatial [working memory-control] subtractions. Based on another model of prefrontal organization [M. Petrides, Frontal lobes and behavior, Cur. Opin. Neurobiol., 4 (1994) 207-211], a reconsideration of the previous imaging Literature data suggested that a dorsal/ventral subdivision of prefrontal cortex may depend upon the type of processing performed upon the information held in working memory. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 88 条
[1]   Empirical analyses of BOLD fMRI statistics .2. Spatially smoothed data collected under null-hypothesis and experimental conditions [J].
Aguirre, GK ;
Zarahn, E ;
DEsposito, M .
NEUROIMAGE, 1997, 5 (03) :199-212
[2]   CORTICAL CONTROL OF SACCADES AND FIXATION IN MAN - A PET STUDY [J].
ANDERSON, TJ ;
JENKINS, IH ;
BROOKS, DJ ;
HAWKEN, MB ;
FRACKOWIAK, RSJ ;
KENNARD, C .
BRAIN, 1994, 117 :1073-1084
[3]   Dissociation of storage and rehearsal in verbal working memory: Evidence from positron emission tomography [J].
Awh, E ;
Jonides, J ;
Smith, EE ;
Schumacher, EH ;
Koeppe, RA ;
Katz, S .
PSYCHOLOGICAL SCIENCE, 1996, 7 (01) :25-31
[4]   Active representation of shape and spatial location in man [J].
Baker, SC ;
Frith, CD ;
Frackowiak, RSJ ;
Dolan, RJ .
CEREBRAL CORTEX, 1996, 6 (04) :612-619
[6]   DELAYED-MATCHING AND DELAYED-RESPONSE DEFICIT FROM COOLING DORSOLATERAL PREFRONTAL CORTEX IN MONKEYS [J].
BAUER, RH ;
FUSTER, JM .
JOURNAL OF COMPARATIVE AND PHYSIOLOGICAL PSYCHOLOGY, 1976, 90 (03) :293-302
[7]  
Becker J T, 1994, Hum Brain Mapp, V1, P284, DOI 10.1002/hbm.460010406
[8]  
BERMAN KF, 1996, NEUROIMAGE, V3, pS529
[9]   A parametric study of prefrontal cortex involvement in human working memory [J].
Braver, TS ;
Cohen, JD ;
Nystrom, LE ;
Jonides, J ;
Smith, EE ;
Noll, DC .
NEUROIMAGE, 1997, 5 (01) :49-62
[10]   PRIMATE FRONTAL EYE FIELDS .1. SINGLE NEURONS DISCHARGING BEFORE SACCADES [J].
BRUCE, CJ ;
GOLDBERG, ME .
JOURNAL OF NEUROPHYSIOLOGY, 1985, 53 (03) :603-635