CLASSIFICATION OF BIG POINT CLOUD DATA USING CLOUD COMPUTING

被引:16
作者
Liu, Kun [1 ]
Boehm, Jan [1 ]
机构
[1] UCL, Dept Civil Environm & Geomat Engn, London WC1E 6BT, England
来源
ISPRS GEOSPATIAL WEEK 2015 | 2015年 / 40-3卷 / W3期
关键词
Point cloud; Machine learning; Cloud computing; Big data;
D O I
10.5194/isprsarchives-XL-3-W3-553-2015
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Point cloud data plays an significant role in various geospatial applications as it conveys plentiful information which can be used for different types of analysis. Semantic analysis, which is an important one of them, aims to label points as different categories. In machine learning, the problem is called classification. In addition, processing point data is becoming more and more challenging due to the growing data volume. In this paper, we address point data classification in a big data context. The popular cluster computing framework Apache Spark is used through the experiments and the promising results suggests a great potential of Apache Spark for large-scale point data processing.
引用
收藏
页码:553 / 557
页数:5
相关论文
共 8 条
[1]  
[Anonymous], 2009, Hadoop: The Definitive Guide
[2]  
Bishop C., 2006, PATTERN RECOGN, DOI DOI 10.1117/1.2819119
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]  
Dean J, 2004, USENIX ASSOCIATION PROCEEDINGS OF THE SIXTH SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDE '04), P137
[5]  
Demantké J, 2011, INT ARCH PHOTOGRAMM, V38-5, P97
[6]   TerraMobilita/iQmulus urban point cloud analysis benchmark [J].
Vallet, Bruno ;
Bredif, Mathieu ;
Serna, Andres ;
Marcotegui, Beatriz ;
Paparoditis, Nicolas .
COMPUTERS & GRAPHICS-UK, 2015, 49 :126-133
[7]  
Weinmann M., 2014, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V3
[8]  
Zaharia Matei, 2010, P 2 USENIX C HOT TOP, V10, P95