Flow behaviour of the submarine glacigenic debris flows on the Bear Island Trough Mouth Fan, western Barents Sea

被引:74
作者
Laberg, JS [1 ]
Vorren, TO [1 ]
机构
[1] Univ Tromso, Dept Geol, N-9037 Tromso, Norway
关键词
Barents Sea; debris flows; flow behaviour; flow surge; hydroplaning; run-out distance;
D O I
10.1046/j.1365-3091.2000.00343.x
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Using 3.5 kHz high-resolution seismic data, gravity cores and side-scan sonar imagery, the flow behaviour of submarine, glacigenic debris flows on the Bear Island Trough Mouth Fan, western Barents Sea was studied. During their downslope movement, the sediments within the uppermost part of the debris flows (<3 m) are inferred to have been deformed as a result of the shear stress at the debris-water interface. Thus, the uppermost part of the flow did not move downslope as a rigid plug. If present, a rigid part of the flow was located at least some metres below the surface. At c. 1000 to at least 1600 m water depth, the debris flows eroded and probably incorporated substrate debris. Further downslope, the debris flows moved passively over substrate sediments. The hypothesis of hydroplaning of the debris flow front may explain why the debris flows moved across the lower fan without affecting the underlying sediments. Detailed morphological information from the surface of one of the debris flow deposits reveals arcuate ridges. These features were probably formed by flow surge. Hydroplaning of the debris flow front may also explain the formation of flow surge. The long runout distance of some of the large debris flows could be due to accretion of material to the base of the debris flow, thereby increasing in volume during flow, and/or to hydroplaning suppressing deceleration of the flow.
引用
收藏
页码:1105 / 1117
页数:13
相关论文
共 37 条
[1]   SHINGLED QUATERNARY DEBRIS FLOW LENSES ON THE NORTH-EAST NEWFOUNDLAND SLOPE [J].
AKSU, AE ;
HISCOTT, RN .
SEDIMENTOLOGY, 1992, 39 (02) :193-206
[2]  
Allen P.A., 1997, EARTH SURFACE PROCES
[3]  
[Anonymous], 1987, REV ENG GEOLOGY
[4]   SELF-LUBRICATION FOR LONG RUNOUT LANDSLIDES [J].
CAMPBELL, CS .
JOURNAL OF GEOLOGY, 1989, 97 (06) :653-665
[5]  
CRANE K, 1997, GLACIATED CONTINENTA, P120
[6]   ECHO CHARACTER OF NORWEGIAN-GREENLAND SEA - RELATIONSHIP TO QUATERNARY SEDIMENTATION [J].
DAMUTH, JE .
MARINE GEOLOGY, 1978, 28 (1-2) :1-36
[7]   Submarine slope stability on high-latitude glaciated Svalbard-Barents Sea margin [J].
Dimakis, P ;
Elverhoi, A ;
Hoeg, K ;
Solheim, A ;
Harbitz, C ;
Laberg, JS ;
Vorren, TO ;
Marr, J .
MARINE GEOLOGY, 2000, 162 (2-4) :303-316
[8]   Large-scale sedimentation on the glacier-influenced Polar North Atlantic margins: Long-range side-scan sonar evidence [J].
Dowdeswell, JA ;
Kenyon, NH ;
Eleverhoi, A ;
Laberg, JS ;
Hollender, FJ ;
Mienert, J ;
Siegert, MJ .
GEOPHYSICAL RESEARCH LETTERS, 1996, 23 (24) :3535-3538
[9]   On the origin and flow behavior of submarine slides on deep-sea fans along the Norwegian Barents Sea continental margin [J].
Elverhoi, A ;
Norem, H ;
Andersen, ES ;
Dowdeswell, JA ;
Fossen, I ;
Haflidason, H ;
Kenyon, NH ;
Laberg, JS ;
King, EL ;
Sejrup, HP ;
Solheim, A ;
Vorren, T .
GEO-MARINE LETTERS, 1997, 17 (02) :119-125
[10]  
EMBLEY RW, 1976, GEOLOGY, V4, P371, DOI 10.1130/0091-7613(1976)4<371:NEFOOD>2.0.CO