Tree species classification from fused active hyperspectral reflectance and LIDAR measurements

被引:67
作者
Puttonen, Eetu [1 ]
Suomalainen, Juha [1 ]
Hakala, Teemu [1 ]
Raikkonen, Esa [1 ,2 ]
Kaartinen, Harri [1 ]
Kaasalainen, Sanna [1 ]
Litkey, Paula [1 ]
机构
[1] Dept Photogrammetry & Remote Sensing, Kyrkslatt 02341, Finland
[2] Klastech GmbH, D-44263 Dortmund, Germany
基金
芬兰科学院;
关键词
Classification; Data fusion; Forestry; Hyperspectrum; LIDAR; VEGETATION; AIRBORNE; CALIBRATION; IMAGERY; FUSION;
D O I
10.1016/j.foreco.2010.08.031
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
A new terrestrial laser system was tested for tree species classification. A dataset consisting of shape parameters of three boreal tree species was collected with Light Detection and Ranging (LIDAR) and integrated with an actively measured reflectance hyperspectra. Tree species were classified using parameters derived from reflectance spectra and point cloud shape distribution. Classification performance was tested with individual, paired, and mixed combinations of both reflectance and shape parameters. The best classification results were obtained with combined datasets consisting of two reflectance and two shape parameters. Of all tested classification parameter combinations, 67.5% were able to classify all trees with over 90% accuracy. The best reflectance spectrum bands for the examined species were located around 550 and 700 nm. The best shape parameters described the upper midsection or the tops of the trees. This study was a successful step in developing classification algorithms for integrated LIDAR and hyperspectral data. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1843 / 1852
页数:10
相关论文
共 32 条
[1]   Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest [J].
Anderson, Jeanne E. ;
Plourde, Lucie C. ;
Martin, Mary E. ;
Braswell, Bobby H. ;
Smith, Marie-Louise ;
Dubayah, Ralph O. ;
Hofton, Michelle A. ;
Blair, J. Bryan .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) :1856-1870
[2]   Integrating LIDAR data and multispectral imagery for enhanced classification of rangeland vegetation: A meta analysis [J].
Bork, Edward W. ;
Su, Jason G. .
REMOTE SENSING OF ENVIRONMENT, 2007, 111 (01) :11-24
[3]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[4]   Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas [J].
Dalponte, Michele ;
Bruzzone, Lorenzo ;
Gianelle, Damiano .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (05) :1416-1427
[5]   Supercontinuum generation in photonic crystal fiber [J].
Dudley, John M. ;
Genty, Goery ;
Coen, Stephane .
REVIEWS OF MODERN PHYSICS, 2006, 78 (04) :1135-1184
[6]   REGULARIZATION THEORY AND NEURAL NETWORKS ARCHITECTURES [J].
GIROSI, F ;
JONES, M ;
POGGIO, T .
NEURAL COMPUTATION, 1995, 7 (02) :219-269
[7]   Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape [J].
Glenn, Edward P. ;
Huete, Alfredo R. ;
Nagler, Pamela L. ;
Nelson, Stephen G. .
SENSORS, 2008, 8 (04) :2136-2160
[8]   Simulated Multispectral Imagery for Tree Species Classification Using Support Vector Machines [J].
Heikkinen, Ville ;
Tokola, Timo ;
Parkkinen, Jussi ;
Korpela, Ilkka ;
Jaaskelainen, Timo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (03) :1355-1364
[9]   Multiview range-image registration for forested scenes using explicitly-matched tie points estimated from natural surfaces [J].
Henning, Jason G. ;
Radtke, Philip J. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2008, 63 (01) :68-83
[10]   A permanent test field for digital photogrammetric systems [J].
Honkavaara, Eija ;
Peltoniemi, Jouni ;
Ahokas, Eero ;
Kulttinen, Risto ;
Hyyppae, Juha ;
Jaakkola, Juha ;
Kaartinen, Harri ;
Markelin, Lauri ;
Nurminen, Kimmo ;
Suomalainen, Juha .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2008, 74 (01) :95-106