Strong duality for inexact linear programming problems

被引:8
作者
Amaya, J
Gómez, JA
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
[3] Inst Cibernet Matemat & Fis, Ciudad Habana, Cuba
关键词
inexact linear programming; parametrized data; strong duality; Dubovitskii-Milyutin approach;
D O I
10.1080/02331930108844532
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we apply the Dubovitskii-Milyutin approach to derive strong duality theorems for inexact linear programming problems. Inexact linear programming deals with the standard linear problem in which the data is not well known and it is supposed to lie in certain given convex sets. The case of parametric dependence of the data is particularly analyzed and relations with semi-infinite and semi-definite programming are also commented.
引用
收藏
页码:243 / 269
页数:27
相关论文
共 16 条
  • [1] AMAYA J, 1997, OPTIMIZATION, V39, P137
  • [2] Bazaraa MokhtarS., 1979, Nonlinear Programming: Theory and Algorithms
  • [3] EXACT SOLUTIONS OF INEXACT LINEAR PROGRAMS
    FALK, JE
    [J]. OPERATIONS RESEARCH, 1976, 24 (04) : 783 - 787
  • [4] Girsanov I. V., 1972, Lectures on Mathematical Theory of Extremum Problems, V67
  • [5] GOMEZ JA, 1996, CURSO CALCULO VARIAC
  • [6] SEMIINFINITE PROGRAMMING - THEORY, METHODS, AND APPLICATIONS
    HETTICH, R
    KORTANEK, KO
    [J]. SIAM REVIEW, 1993, 35 (03) : 380 - 429
  • [7] HETTICH R, 1978, LECT NOTES CONTROL I, V7, P1
  • [8] JONGEN HT, 1995, GEN SEMIINFINITE OPT
  • [9] KANTOROVICH LV, 1977, FUNCTSIONALNII ANAL
  • [10] MATLOKA M, 1992, OPTIMIZATION, V23, P1