1 Protein synthesis dependency and the role of endogenously generated platelet activating factor (PAF) and leukotriene B-4 (LTB4) in leukocyte migration through interleukin-1beta (IL-1beta)- and tumour necrosis factor-alpha (TNFalpha)-stimulated mouse cremasteric venules was investigated using established pharmacological interventions and the technique of intravital microscopy. 2 Based on previously obtained dose-response data, 30 ng rmIL-1beta and 300 ng rmTNFalpha were injected intrascrotally (4 h test period) to induce comparable levels of leukocyte firm adhesion and transmigration in mouse cremasteric venules. 3 Co-injection of the mRNA synthesis inhibitor, actinomycin D (0.2 mg kg(-1)), with the cytokines significantly inhibited firm adhesion (49+/-13.6%) and transmigration (67.2+/-4.2%) induced by IL-1beta, but not TNFalpha. 4 In vitro, TNFalpha (1-100 ng ml(-1)), but not IL-1beta, stimulated L-selectin shedding and increased beta(2) integrin expression on mouse neutrophils, as quantified by flow cytometry. 5 The PAF receptor antagonist, UK-74,505 (modipafant, 0.5 mg kg(-1), i.v.), had no effect on adhesion induced by either cytokine, but significantly inhibited transmigration induced by IL-1beta (66.5+/-4.5%). 6 The LTB4 receptor antagonist, CP-105,696 (100 mg kg(-1), p.o.), significantly inhibited both IL-1beta induced adhesion (81.4+/-15.2%) and transmigration (58.7+/-7.2%), but had no effect on responses elicited by TNFa. Combined administration of the two antagonists had no enhanced inhibitory effects on responses induced by either cytokine. 7 The data indicate that firm adhesion and transmigration in mouse cremasteric venules stimulated by IL-1beta, but not TNFa, is protein synthesis dependent and mediated by endogenous generation of PAF and LTB4. Additionally, TNFalpha but not IL-1beta, can directly stimulate mouse neutrophils in vitro. The findings provide further evidence to suggest divergent mechanisms of actions of IL-1beta and TNFalpha, two cytokines often considered to act via common molecular/cellular pathways.