Tricorn protease in bacteria:: Characterization of the enzyme from Streptomyces coelicolor

被引:8
作者
Tamura, N [1 ]
Pfeifer, G [1 ]
Baumeister, W [1 ]
Tamura, T [1 ]
机构
[1] Max Planck Inst Biochem, Dept Mol Struct Biol, D-82152 Martinsried, Germany
关键词
eubacteria; Streptomyces coelicolor; tricorn protease;
D O I
10.1515/BC.2001.055
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tricorn protease is believed to act downstream of the proteasome, or of other ATP-dependent proteases, cleaving the oligopeptides (mostly 6 to 12 residues) released by them into small peptides (2 to 4 residues), before an array of aminopeptidases finally converts them into free amino acids. Hitherto, the occurrence of Tricorn protease seemed to be limited to some archaea, but genes encoding Tricorn homologs have now been found in several bacterial genomes, Among them is Streptomyces coelicolor A3(2), which has, in fact, two Tricorn-like genes, ScC77,16c and ScE87.19. The proteins encoded by them (TRI-ScC77 and TRI-ScE87) are very similar in their PDZ and TSP domains, but rather divergent in their beta -propeller domains. We have expressed one of them, TRI-ScC77, in E, coli and characterized the recombinant protein structurally and functionally. TRI-ScC77 forms a homohexameric complex of approximately 700 kDa, both in E. coli and in S, coelicolor, with enzymatic properties very similar to the complex from the archaeon Thermoplasma acidophilum. The fact that Tricorn-like proteins exist not only in thermoacidophiles, but also in bacteria inhabiting radically different environments, rules out the possibility that Tricorn protease is an adaptive element that helps to meet the challenges of an extreme habitat.
引用
收藏
页码:449 / 458
页数:10
相关论文
共 32 条
[1]   Processive degradation of proteins and other catalytic properties of the proteasome from Thermoplasma acidophilum [J].
Akopian, TN ;
Kisselev, AF ;
Goldberg, AL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (03) :1791-1798
[2]   FtsH recognizes proteins with unfolded structure and hydrolyzes the carboxyl side of hydrophobic residues [J].
Asahara, Y ;
Atsuta, K ;
Motohashi, K ;
Taguchi, H ;
Yohda, M ;
Yoshida, M .
JOURNAL OF BIOCHEMISTRY, 2000, 127 (05) :931-937
[3]   The proteasome:: Paradigm of a self-compartmentalizing protease [J].
Baumeister, W ;
Walz, J ;
Zühl, F ;
Seemuller, E .
CELL, 1998, 92 (03) :367-380
[4]   ELECTRON-MICROSCOPY AND IMAGE-ANALYSIS OF THE MULTICATALYTIC PROTEINASE [J].
BAUMEISTER, W ;
DAHLMANN, B ;
HEGERL, R ;
KOPP, F ;
KUEHN, L ;
PFEIFER, G .
FEBS LETTERS, 1988, 241 (1-2) :239-245
[5]   Structure and functions of the 20S and 26S proteasomes [J].
Coux, O ;
Tanaka, K ;
Goldberg, AL .
ANNUAL REVIEW OF BIOCHEMISTRY, 1996, 65 :801-847
[6]   Proteasomes and other self-compartmentalizing proteases in prokaryotes [J].
De Mot, R ;
Nagy, I ;
Walz, J ;
Baumeister, W .
TRENDS IN MICROBIOLOGY, 1999, 7 (02) :88-92
[7]   Prolyl oligopeptidase:: An unusual β-propeller domain regulates proteolysis [J].
Fülöp, V ;
Böcskei, Z ;
Polgár, L .
CELL, 1998, 94 (02) :161-170
[8]   A giant protease with potential to substitute for some functions of the proteasome [J].
Geier, E ;
Pfeifer, G ;
Wilm, M ;
Lucchiari-Hartz, M ;
Baumeister, W ;
Eichmann, K ;
Niedermann, G .
SCIENCE, 1999, 283 (5404) :978-981
[9]   DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae [J].
Heidelberg, JF ;
Eisen, JA ;
Nelson, WC ;
Clayton, RA ;
Gwinn, ML ;
Dodson, RJ ;
Haft, DH ;
Hickey, EK ;
Peterson, JD ;
Umayam, L ;
Gill, SR ;
Nelson, KE ;
Read, TD ;
Tettelin, H ;
Richardson, D ;
Ermolaeva, MD ;
Vamathevan, J ;
Bass, S ;
Qin, HY ;
Dragoi, I ;
Sellers, P ;
McDonald, L ;
Utterback, T ;
Fleishmann, RD ;
Nierman, WC ;
White, O ;
Salzberg, SL ;
Smith, HO ;
Colwell, RR ;
Mekalanos, JJ ;
Venter, JC ;
Fraser, CM .
NATURE, 2000, 406 (6795) :477-483
[10]   The ubiquitin system [J].
Hershko, A ;
Ciechanover, A .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :425-479