Influence of the Salmonella typhimurium pathogenicity island 2 type III secretion system on bacterial growth in the mouse

被引:161
作者
Shea, JE [1 ]
Beuzon, CR [1 ]
Gleeson, C [1 ]
Mundy, R [1 ]
Holden, DW [1 ]
机构
[1] Hammersmith Hosp, Imperial Coll, Sch Med, Dept Infect Dis, London W12 0NN, England
关键词
D O I
10.1128/IAI.67.1.213-219.1999
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
We have investigated the in vivo growth kinetics of a Salmonella typhimurium strain (P11D10) carrying a mutation in ssaJ, a Salmonella pathogenicity island 2 (SPI2) gene encoding a component of a type III secretion system required for systemic growth in mice. Similar numbers of mutant and wild-type cells were recovered front the spleens and livers of BALB/c mice up to 8 h after inoculation by the intraperitoneal route. Thereafter, the numbers of wild-type cells continued to increase logarithmically in these organs, whereas those of P11D10 remained relatively static for several days before being cleared, Gentamicin protection experiments on spleen cell suspensions recovered from infected mice showed that viable intracellular wild-type bacteria accumulated over time but that intracellular P11D10 cells did not, Infection experiments were also performed with wild-type and P11D10 cells carrying the temperature-sensitive plasmid pHSG422 to distinguish between bacterial growth rates and killing in vivo, At 16 h postinoculation there were 10-fold more wild-type cells than mutant cells in the spleens of infected mice, but the numbers of cells of both strains carrying the nonreplicating plasmid were very similar, showing that there was little difference in the degree of killing sustained by the two strains and that the SPI2 secretion system must be required for bacterial replication, rather than survival in vivo. The SPI2 mutant phenotype in mice is similar to that of strains carrying mutations in the Salmonella virulence plasmid spv genes. To determine if these two sets of genes interact together, a double mutant strain carrying SPI2 and spv mutations was constructed and compared with strains carrying single mutations in terms of virulence attenuation. These experiments failed to provide any evidence showing that the SPI2 and spy gene products interact together as part of the same virulence mechanism.
引用
收藏
页码:213 / 219
页数:7
相关论文
共 49 条
  • [1] SALMONELLA STIMULATE MACROPHAGE MACROPINOCYTOSIS AND PERSIST WITHIN SPACIOUS PHAGOSOMES
    ALPUCHEARANDA, CM
    RACOOSIN, EL
    SWANSON, JA
    MILLER, SI
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 1994, 179 (02) : 601 - 608
  • [2] BENJAMIN WH, 1990, J IMMUNOL, V144, P3143
  • [3] EXCISION OF LARGE DNA REGIONS TERMED PATHOGENICITY ISLANDS FROM TRANSFER-RNA-SPECIFIC LOCI IN THE CHROMOSOME OF AN ESCHERICHIA-COLI WILD-TYPE PATHOGEN
    BLUM, G
    OTT, M
    LISCHEWSKI, A
    RITTER, A
    IMRICH, H
    TSCHAPE, H
    HACKER, J
    [J]. INFECTION AND IMMUNITY, 1994, 62 (02) : 606 - 614
  • [4] BUCHMEIER NA, 1989, INFECT IMMUN, V57, P1
  • [5] PHAGOLYSOSOME FORMATION, CYCLIC ADENOSINE 3'-5'-MONOPHOSPHATE AND THE FATE OF SALMONELLA-TYPHIMURIUM WITHIN MOUSE PERITONEAL MACROPHAGES
    CARROL, MEW
    JACKETT, PS
    ABER, VR
    LOWRIE, DB
    [J]. JOURNAL OF GENERAL MICROBIOLOGY, 1979, 110 (FEB): : 421 - 429
  • [6] ROUTE OF ENTERIC INFECTION IN NORMAL MICE
    CARTER, PB
    COLLINS, FM
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 1974, 139 (05) : 1189 - 1203
  • [7] Salmonella spp are cytotoxic for cultured macrophages
    Chen, LM
    Kaniga, K
    Galan, JE
    [J]. MOLECULAR MICROBIOLOGY, 1996, 21 (05) : 1101 - 1115
  • [8] Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival
    Cirillo, DM
    Valdivia, RH
    Monack, DM
    Falkow, S
    [J]. MOLECULAR MICROBIOLOGY, 1998, 30 (01) : 175 - 188
  • [9] VACCINES AND CELL-MEDIATED-IMMUNITY
    COLLINS, FM
    [J]. BACTERIOLOGICAL REVIEWS, 1974, 38 (04) : 371 - 402
  • [10] The Yersinia Yop virulon: A bacterial system for subverting eukaryotic cells
    Cornelis, GR
    WolfWatz, H
    [J]. MOLECULAR MICROBIOLOGY, 1997, 23 (05) : 861 - 867