Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1

被引:353
作者
Andreassen, PR [1 ]
Lohez, OD [1 ]
Lacroix, FB [1 ]
Margolis, RL [1 ]
机构
[1] CEA, CNRS, Inst Biol Structurale Jean Pierre Ebel, F-38027 Grenoble 1, France
关键词
D O I
10.1091/mbc.12.5.1315
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
A "spindle assembly" checkpoint has been described that arrests cells in G1 following inappropriate exit from mitosis in the presence of microtubule inhibitors. We have here addressed the question of whether the resulting tetraploid state itself, rather than failure of spindle function or induction of spindle damage, acts as a checkpoint to arrest cells in G1. Dihydrocytochalasin B induces cleavage failure in cells where spindle function and chromatid segregation are both normal. Notably, we show here that nontransformed REF-52 cells arrest indefinitely in tetraploid G1 following cleavage failure. The spindle assembly checkpoint and the tetraploidization checkpoint that we describe here are likely to be equivalent. Both involve arrest in GI with inactive cdk2 kinase, hypophosphorylated retinoblastoma protein, and elevated levels of p21(WAF1) and cyclin E. Furthermore, both require p53. We show that failure to arrest in G1 following tetraploidization rapidly results in aneuploidy. Similar tetraploid G1 arrest results have been obtained with mouse NIH3T3 and human IMR-90 cells. Thus, we propose that a general checkpoint control acts in G1 to recognize tetraploid cells and induce their arrest and thereby prevents the propagation of errors of late mitosis and the generation of aneuploidy. As such, the tetraploidy checkpoint may be a critical activity of p53 in its role of ensuring genomic integrity.
引用
收藏
页码:1315 / 1328
页数:14
相关论文
共 52 条
[1]   Chemical induction of mitotic checkpoint override in mammalian cells results in aneuploidy following a transient tetraploid state [J].
Andreassen, PR ;
Martineau, SN ;
Margolis, RL .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 1996, 372 (02) :181-194
[2]   MICROTUBULE DEPENDENCY OF P34(CDC2) INACTIVATION AND MITOTIC EXIT IN MAMMALIAN-CELLS [J].
ANDREASSEN, PR ;
MARGOLIS, RL .
JOURNAL OF CELL BIOLOGY, 1994, 127 (03) :789-802
[3]   INHIBITION OF CYTOKINESIS AND ALTERED CONTRACTILE RING MORPHOLOGY INDUCED BY CYTOCHALASINS IN SYNCHRONIZED PTK2 CELLS [J].
AUBIN, JE ;
OSBORN, M ;
WEBER, K .
EXPERIMENTAL CELL RESEARCH, 1981, 136 (01) :63-79
[4]   SUPPRESSION OF HUMAN COLORECTAL-CARCINOMA CELL-GROWTH BY WILD-TYPE-P53 [J].
BAKER, SJ ;
MARKOWITZ, S ;
FEARON, ER ;
WILLSON, JKV ;
VOGELSTEIN, B .
SCIENCE, 1990, 249 (4971) :912-915
[5]   Enhanced phosphorylation of p53 by ATN in response to DNA damage [J].
Banin, S ;
Moyal, L ;
Shieh, SY ;
Taya, Y ;
Anderson, CW ;
Chessa, L ;
Smorodinsky, NI ;
Prives, C ;
Reiss, Y ;
Shiloh, Y ;
Ziv, Y .
SCIENCE, 1998, 281 (5383) :1674-1677
[6]  
BRENOTBOSC F, 1995, CHROMOSOMA, V103, P517, DOI 10.1007/BF00355316
[7]   THE RETINOBLASTOMA PROTEIN IS PHOSPHORYLATED DURING SPECIFIC PHASES OF THE CELL-CYCLE [J].
BUCHKOVICH, K ;
DUFFY, LA ;
HARLOW, E .
CELL, 1989, 58 (06) :1097-1105
[8]   Mutations of mitotic checkpoint genes in human cancers [J].
Cahill, DP ;
Lengauer, C ;
Yu, J ;
Riggins, GJ ;
Willson, JKV ;
Markowitz, SD ;
Kinzler, KW ;
Vogelstein, B .
NATURE, 1998, 392 (6673) :300-303
[9]   Activation of the ATM kinase by ionizing radiation and phosphorylation of p53 [J].
Canman, CE ;
Lim, DS ;
Cimprich, KA ;
Taya, Y ;
Tamai, K ;
Sakaguchi, K ;
Appella, E ;
Kastan, MB ;
Siliciano, JD .
SCIENCE, 1998, 281 (5383) :1677-1679
[10]   Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC [J].
Chan, GKT ;
Jablonski, SA ;
Sudakin, V ;
Hittle, JC ;
Yen, TJ .
JOURNAL OF CELL BIOLOGY, 1999, 146 (05) :941-954