Activation of ATP-sensitive K+ channels in the ventromedial hypothalamus amplifies counterregulatory hormone responses to hypoglycemia in normal and recurrently hypoglycemic rats

被引:84
作者
McCrimmon, RJ
Evans, ML
Fan, XN
McNay, EC
Chan, O
Ding, YY
Zhu, WL
Gram, DX
Sherwin, RS
机构
[1] Yale Univ, Sch Med, Dept Internal Med & Endocrinol, New Haven, CT USA
[2] Novo Nordisk, Pharmacol Res 3, Malov, Denmark
关键词
D O I
10.2337/diabetes.54.11.3169
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The mechanism(s) by which glucosensing neurons detect fluctuations in glucose remains largely unknown. In the pancreatic beta-cell, ATP-sensitive K+ channels (KATP channels) play a key role in glucosensing by providing a link between neuronal metabolism and membrane potential. The present study was designed to determine in vivo whether the pharmacological opening of ventromedial hypothalamic KATP channels during systemic hypoglycemia would amplify hormonal counterregulatory responses in normal rats and those with defective counterregulation arising from prior recurrent hypoglycemia. Controlled hypoglycemia (similar to 2.8 mmol/1) was induced in vivo using a hyperinsulinemic (20 mU center dot kg(-1) center dot min) glucose clamp technique in unrestrained, overnight-fasted, chronically catheterized Sprague-Dawley rats. Immediately before the induction of hypoglycemia, the rats received bilateral ventromedial hypothalamic microinjections of either the potassium channel openers (KCOs) diazoxide and NN414 or their respective controls. In normal rats, both KCOs amplified epinephrine and glucagon counterregulatory responses to hypoglycemia. Moreover, diazoxide also amplified the counterregulatory responses in a rat model of defective hormonal counterregulation. Taken together, our data suggest that the K-ATP channel plays a key role in vivo within glucosensing neurons in the ventromedial hypothalamus in the detection of incipient hypoglycemia and the initiation of protective counterregulatory responses. We also conclude that KCOs may offer a future potential therapeutic option for individuals with insulin-treated diabetes who develop defective counterregulation.
引用
收藏
页码:3169 / 3174
页数:6
相关论文
共 55 条
[1]   GLUCOSE-INDUCED EXCITATION OF HYPOTHALAMIC NEURONS IS MEDIATED BY ATP-SENSITIVE K+ CHANNELS [J].
ASHFORD, MLJ ;
BODEN, PR ;
TREHERNE, JM .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1990, 415 (04) :479-483
[2]   TOLBUTAMIDE EXCITES RAT GLUCORECEPTIVE VENTROMEDIAL HYPOTHALAMIC NEURONS BY INDIRECT INHIBITION OF ATP-K+ CHANNELS [J].
ASHFORD, MLJ ;
BODEN, PR ;
TREHERNE, JM .
BRITISH JOURNAL OF PHARMACOLOGY, 1990, 101 (03) :531-540
[3]   Intraislet hyperinsulinemia prevents the glucagon response to hypoglycemia despite an intact autonomic response [J].
Banarer, S ;
McGregor, VP ;
Cryer, PE .
DIABETES, 2002, 51 (04) :958-965
[4]   Chronic hypoglycemia and diabetes impair counterregulation induced by localized 2-deoxy-glucose perfusion of the ventromedial hypothalamus in rats [J].
Borg, MA ;
Borg, WP ;
Tamborlane, WV ;
Brines, ML ;
Shulman, GI ;
Sherwin, RS .
DIABETES, 1999, 48 (03) :584-587
[5]   Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats [J].
Borg, MA ;
Sherwin, RS ;
Borg, WP ;
Tamborlane, WV ;
Shulman, GI .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (02) :361-365
[6]   VENTROMEDIAL HYPOTHALAMIC-LESIONS IN RATS SUPPRESS COUNTERREGULATORY RESPONSES TO HYPOGLYCEMIA [J].
BORG, WP ;
DURING, MJ ;
SHERWIN, RS ;
BORG, MA ;
BRINES, ML ;
SHULMAN, GI .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 93 (04) :1677-1682
[7]   LOCAL VENTROMEDIAL HYPOTHALAMUS GLUCOPENIA TRIGGERS COUNTERREGULATORY HORMONE-RELEASE [J].
BORG, WP ;
SHERWIN, RS ;
DURING, MJ ;
BORG, MA ;
SHULMAN, GI .
DIABETES, 1995, 44 (02) :180-184
[8]   ATP-SENSITIVE K+ CHANNELS IN PANCREATIC BETA-CELLS - SPARE-CHANNEL HYPOTHESIS [J].
COOK, DL ;
SATIN, LS ;
ASHFORD, MLJ ;
HALES, CN .
DIABETES, 1988, 37 (05) :495-498
[9]   IATROGENIC HYPOGLYCEMIA AS A CAUSE OF HYPOGLYCEMIA-ASSOCIATED AUTONOMIC FAILURE IN IDDM - A VICIOUS CYCLE [J].
CRYER, PE .
DIABETES, 1992, 41 (03) :255-260
[10]   HYPOGLYCEMIA - THE LIMITING FACTOR IN THE MANAGEMENT OF IDDM [J].
CRYER, PE .
DIABETES, 1994, 43 (11) :1378-1389