Alfven waves and ideal two-dimensional Galerkin truncated magnetohydrodynamics

被引:14
作者
Krstulovic, Giorgio [1 ,2 ,3 ,4 ]
Brachet, Marc-Etienne [1 ,2 ,3 ]
Pouquet, Annick [5 ]
机构
[1] Ecole Normale Super, CNRS, Lab Phys Stat, F-75231 Paris, France
[2] Univ Paris 06, F-75231 Paris, France
[3] Univ Paris 07, F-75231 Paris, France
[4] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, Lab Cassiopee, F-06300 Nice, France
[5] Natl Ctr Atmospher Res, Computat & Informat Syst Lab, Boulder, CO 80307 USA
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 01期
基金
美国国家科学基金会;
关键词
INERTIAL RANGES; TURBULENCE; MODEL;
D O I
10.1103/PhysRevE.84.016410
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate numerically the dynamics of two-dimensional Euler and ideal magnetohydrodynamics (MHD) flows in systems with a finite number of modes, up to 40962, for which several quadratic invariants are preserved by the truncation and the statistical equilibria are known. Initial conditions are the Orszag-Tang vortex with a neutral X point centered on a stagnation point of the velocity field in the large scales. In MHD, we observe that the total energy spectra at intermediate times and intermediate scales correspond to the interactions of eddies and waves, E-T(k) similar to k(-3/2). Moreover, no pseudodissipative range is visible for either Euler or ideal MHD in two dimensions. In the former case, this may be linked to the existence of a vanishing turbulent viscosity whereas in MHD, the numerical resolution employed may be insufficient. When imposing a uniform magnetic field to the flow, we observe a lack of saturation of the formation of small scales together with a significant slowing down of their equilibration, with however a cutoff independent partial thermalization being reached at intermediate scales.
引用
收藏
页数:10
相关论文
共 33 条
[1]  
[Anonymous], ASTROPHYSICAL FLUID
[2]  
[Anonymous], 1955, Los Alamos Report
[3]  
[Anonymous], 1964, Soviet Astronomy
[4]  
BRUNO R, 2005, LIVING REV SOLAR PHY, V2
[5]   Effective dissipation and turbulence in spectrally truncated euler flows -: art. no. 264502 [J].
Cichowlas, C ;
Bonaïti, P ;
Debbasch, F ;
Brachet, M .
PHYSICAL REVIEW LETTERS, 2005, 95 (26)
[6]   POSSIBILITY OF AN INVERSE CASCADE OF MAGNETIC HELICITY IN MAGNETOHYDRODYNAMIC TURBULENCE [J].
FRISCH, U ;
POUQUET, A ;
LEORAT, J ;
MAZURE, A .
JOURNAL OF FLUID MECHANICS, 1975, 68 (APR29) :769-778
[7]  
FRISCH U, 1983, THEOR APPL, V2, P191
[8]   HIGH-BETA TURBULENCE IN 2-DIMENSIONAL MAGNETOHYDRODYNAMICS [J].
FYFE, D ;
MONTGOMERY, D .
JOURNAL OF PLASMA PHYSICS, 1976, 16 (OCT) :181-191
[9]   A weak turbulence theory for incompressible magnetohydrodynamics [J].
Galtier, S ;
Nazarenko, SV ;
Newell, AC ;
Pouquet, A .
JOURNAL OF PLASMA PHYSICS, 2000, 63 :447-488
[10]   RELAXATION PROCESSES IN A TURBULENT COMPRESSIBLE MAGNETOFLUID [J].
GHOSH, S ;
MATTHAEUS, WH .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (07) :1520-1534