Hybrid computing using a neural network with dynamic external memory

被引:869
作者
Graves, Alex [1 ]
Wayne, Greg [1 ]
Eynolds, Malcolm R. [1 ]
Harley, Tim [1 ]
Danihelka, Ivo [1 ]
Grabska-Barwinska, Agnieszka [1 ]
Colmenarejo, Sergio Gomez [1 ]
Grefenstette, Edward [1 ]
Amalho, Tiago R. [1 ]
Agapiou, John [1 ]
Badia, Adria Puigdomenech [1 ]
Hermann, Karl Moritz [1 ]
Zwols, Yori [1 ]
Strovski, Georg O. [1 ]
Ain, Adam C. [1 ]
King, Helen [1 ]
Summerfield, Christopher [1 ]
Lunsom, Phil B. [1 ]
Kavukcuoglu, Koray [1 ]
Hassabis, Demis [1 ]
机构
[1] Google DeepMind, 5 New St Sq, London EC4A 3TW, England
关键词
COMPLEMENTARY LEARNING-SYSTEMS; HIPPOCAMPUS; MODELS;
D O I
10.1038/nature20101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machine learning model called a differentiable neural computer (DNC), which consists of a neural network that can read from and write to an external memory matrix, analogous to the random-access memory in a conventional computer. Like a conventional computer, it can use its memory to represent and manipulate complex data structures, but, like a neural network, it can learn to do so from data. When trained with supervised learning, we demonstrate that a DNC can successfully answer synthetic questions designed to emulate reasoning and inference problems in natural language. We show that it can learn tasks such as finding the shortest path between specified points and inferring the missing links in randomly generated graphs, and then generalize these tasks to specific graphs such as transport networks and family trees. When trained with reinforcement learning, a DNC can complete a moving blocks puzzle in which changing goals are specified by sequences of symbols. Taken together, our results demonstrate that DNCs have the capacity to solve complex, structured tasks that are inaccessible to neural networks without external read-write memory.
引用
收藏
页码:471 / +
页数:21
相关论文
共 51 条
[1]   CHARACTERISTICS OF SPARSELY ENCODED ASSOCIATIVE MEMORY [J].
AMARI, S .
NEURAL NETWORKS, 1989, 2 (06) :451-457
[2]  
[Anonymous], 2014, PREPRINT
[3]  
[Anonymous], 2001, The algebraic mind: Integrating connectionism and cognitive science
[4]  
[Anonymous], 2014, PREPRINT
[5]  
Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, DOI 10.48550/ARXIV.1409.0473]
[6]  
Bengio Y., 2009, P 26 ANN INT C MACHI, P41, DOI DOI 10.1145/1553374.1553380
[7]   From machine learning to machine reasoning An essay [J].
Bottou, Leon .
MACHINE LEARNING, 2014, 94 (02) :133-149
[8]   Search-based structured prediction [J].
Daume, Hal, III ;
Langford, John ;
Marcu, Daniel .
MACHINE LEARNING, 2009, 75 (03) :297-325
[9]  
Dean J., 2012, ADV NEURAL INFORM PR, V25, P1223, DOI DOI 10.5555/2999134.2999271
[10]   SYMBOLIC COMMUNICATION BETWEEN 2 PIGEONS (COLUMBA-LIVIA-DOMESTICA) [J].
EPSTEIN, R ;
LANZA, RP ;
SKINNER, BF .
SCIENCE, 1980, 207 (4430) :543-545