Gauge invariant variables in two-parameter nonlinear perturbations

被引:60
作者
Nakamura, K [1 ]
机构
[1] Natl Astron Observ, Div Theoret Astrophys, Mitaka, Tokyo 1818588, Japan
来源
PROGRESS OF THEORETICAL PHYSICS | 2003年 / 110卷 / 04期
关键词
D O I
10.1143/PTP.110.723
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The procedure to find gauge invariant variables for two-parameter nonlinear perturbations in general relativity is considered. For each order metric perturbation, we define the variable which is defined by the appropriate combination with lower order metric perturbations. Under the gauge transformation, this variable is transformed in the manner similar to the gauge transformation of linear order metric perturbation. We confirm this up to third order. This implies that gauge invariant variables for higher order metric perturbations can be found by using a procedure similar to that for linear order metric perturbations. We also derive gauge invariant combinations for the perturbation of an arbitrary physical variable, other than the spacetime metric, up to third order.
引用
收藏
页码:723 / 755
页数:33
相关论文
共 34 条
[1]  
[Anonymous], EXACT SOLUTIONS EINS
[2]   GAUGE-INVARIANT COSMOLOGICAL PERTURBATIONS [J].
BARDEEN, JM .
PHYSICAL REVIEW D, 1980, 22 (08) :1882-1905
[3]   Two-parameter nonlinear spacetime perturbations: gauge transformations and gauge invariance [J].
Bruni, M ;
Gualtieri, L ;
Sopuerta, CF .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (03) :535-556
[4]   Observables and gauge invariance in the theory of nonlinear spacetime perturbations [J].
Bruni, M ;
Sonego, S .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (07) :L29-L36
[5]   Second order gauge invariant gravitational perturbations of a Kerr black hole [J].
Campanelli, M ;
Lousto, CO .
PHYSICAL REVIEW D, 1999, 59 (12)
[6]   SLOWLY ROTATING HOMOGENEOUS MASSES IN GENERAL RELATIVITY [J].
CHANDRASEKHAR, S ;
MILLER, JC .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1974, 167 (01) :63-79
[7]  
Chandrasekhar S., 1983, MATH THEORY BLACK HO
[8]  
Choquet-Bruhat Y., 1982, ANAL MANIFOLDS PHYS
[9]   Gravity in the Randall-Sundrum brane world [J].
Garriga, J ;
Tanaka, T .
PHYSICAL REVIEW LETTERS, 2000, 84 (13) :2778-2781
[10]   GAUGE-INVARIANT PERTURBATIONS ON MOST GENERAL SPHERICALLY SYMMETRIC SPACE-TIMES [J].
GERLACH, UH ;
SENGUPTA, UK .
PHYSICAL REVIEW D, 1979, 19 (08) :2268-2272