Expression of rat aspartyl-tRNA synthetase in Saccharomyces cerevisiae - Role of the NH2-terminal polypeptide extension on enzyme activity and stability

被引:24
作者
Agou, F [1 ]
Waller, JP [1 ]
Mirande, M [1 ]
机构
[1] CNRS, ENZYMOL & BIOCHIM STRUCT LAB, GIF SUR YVETTE, FRANCE
关键词
D O I
10.1074/jbc.271.46.29295
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cytoplasmic aspartyl-tRNA synthetase from mammals is one of the components of a multienzyme complex comprising nine synthetase activities. The presence of an amino-terminal extension composed of about 40 residues is a characteristic of the eukaryotic enzyme. We report here the expression in the yeast Saccharomyces cerevisiae of a native form of rat aspartyl-tRNA synthetase and of two truncated derivatives lacking 20 or 36 amino acid residues from their amino-terminal polypeptide extension. The three recombinant enzyme species were purified to homogeneity. They behave as alpha(2) dimers and display catalytic parameters in the tRNA aminoacylation reaction identical to those determined for the native, complex-associated form of aspartyl-tRNA synthetase isolated from rat liver. Because the dimer dissociation constant of rat AspRS is much higher than that of its bacterial and yeast counterparts, we could establish a direct correlation between dissociation of the dimer and inactivation of the enzyme. Our results clearly show that the monomer is devoid of amino acid activation and tRNA aminoacylation activities, indicating that dimerization is essential to confer an active conformation on the catalytic site. The two NH2-terminal truncated derivatives were fully active, but proved to be more unstable than the recombinant native enzyme, suggesting that the polypeptide extension fulfills structural rather than catalytic requirements.
引用
收藏
页码:29295 / 29303
页数:9
相关论文
共 47 条
[1]   CRYSTAL-STRUCTURE OF HISTIDYL-TRANSFER-RNA SYNTHETASE FROM ESCHERICHIA-COLI COMPLEXED WITH HISTIDYL-ADENYLATE [J].
ARNEZ, JG ;
HARRIS, DC ;
MITSCHLER, A ;
REES, B ;
FRANCKLYN, CS ;
MORAS, D .
EMBO JOURNAL, 1995, 14 (17) :4143-4155
[2]   ANALYSIS OF NUMERICAL-METHODS FOR COMPUTER-SIMULATION OF KINETIC PROCESSES - DEVELOPMENT OF KINSIM - A FLEXIBLE, PORTABLE SYSTEM [J].
BARSHOP, BA ;
WRENN, RF ;
FRIEDEN, C .
ANALYTICAL BIOCHEMISTRY, 1983, 130 (01) :134-145
[3]  
BEC G, 1994, J BIOL CHEM, V269, P2086
[4]   CRYSTAL-STRUCTURES AT 2.5 ANGSTROM RESOLUTION OF SERYL-TRANSFER-RNA SYNTHETASE COMPLEXED 2 ANALOGS OF SERYL ADENYLATE [J].
BELRHALI, H ;
YAREMCHUK, A ;
TUKALO, M ;
LARSEN, K ;
BERTHETCOLOMINAS, C ;
LEBERMAN, R ;
BEIJER, B ;
SPROAT, B ;
ALSNIELSEN, J ;
GRUBEL, G ;
LEGRAND, JF ;
LEHMANN, M ;
CUSACK, S .
SCIENCE, 1994, 263 (5152) :1432-1436
[5]   THE 2.9 ANGSTROM CRYSTAL-STRUCTURE OF THERMUS-THERMOPHILUS SERYL-TRANSFER-RNA SYNTHETASE COMPLEXED WITH TRNA(SER) [J].
BIOU, V ;
YAREMCHUK, A ;
TUKALO, M ;
CUSACK, S .
SCIENCE, 1994, 263 (5152) :1404-1410
[6]   RECOGNITION OF TRANSFER-RNAS BY AMINOACYL-TRANSFER RNA-SYNTHETASES [J].
CAVARELLI, J ;
MORAS, D .
FASEB JOURNAL, 1993, 7 (01) :79-86
[7]   THE ACTIVE-SITE OF YEAST ASPARTYL-TRANSFER-RNA SYNTHETASE - STRUCTURAL AND FUNCTIONAL-ASPECTS OF THE AMINOACYLATION REACTION [J].
CAVARELLI, J ;
ERIANI, G ;
REES, B ;
RUFF, M ;
BOEGLIN, M ;
MITSCHLER, A ;
MARTIN, F ;
GANGLOFF, J ;
THIERRY, JC ;
MORAS, D .
EMBO JOURNAL, 1994, 13 (02) :327-337
[8]   YEAST TRANSFER RNA(ASP) RECOGNITION BY ITS COGNATE CLASS-II AMINOACYL-TRANSFER RNA-SYNTHETASE [J].
CAVARELLI, J ;
REES, B ;
RUFF, M ;
THIERRY, JC ;
MORAS, D .
NATURE, 1993, 362 (6416) :181-184
[9]   MULTIPLE FORMS OF ARGINYL-TRANSFER RNA AND LYSYL-TRANSFER RNA-SYNTHETASES IN RAT-LIVER - A RE-EVALUATION [J].
CIRAKOGLU, B ;
WALLER, JP .
BIOCHIMICA ET BIOPHYSICA ACTA, 1985, 829 (02) :173-179
[10]   LEUCYL-TRANSFER RNA AND LYSYL-TRANSFER RNA-SYNTHETASES, DERIVED FROM THE HIGH-MR COMPLEX OF SHEEP LIVER, ARE HYDROPHOBIC PROTEINS [J].
CIRAKOGLU, B ;
WALLER, JP .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1985, 151 (01) :101-110