Dyskeratosis congenita - A disease of dysfunctional telomere maintenance

被引:97
作者
Mason, PJ
Wilson, DB
Bessler, M
机构
[1] Washington Univ, Sch Med, Dept Med, Div Hematol, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Med, Div Hematol Oncol, St Louis, MO 63110 USA
关键词
D O I
10.2174/1566524053586581
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Dyskeratosis congenita (DC) is a rare inherited bone marrow failure syndrome associated with abnormalities of the skin, fingernails, and tongue. Other clinical manifestations may include epiphora, lung fibrosis, liver cirrhosis, osteoporosis, and a predisposition to develop a variety of malignancies. The clinical picture often resembles that of a premature aging syndrome and tissues affected are those with a high cell turnover. DC has been linked to mutations in at least four distinct genes, three of which have been identified. The product of these genes, dyskerin, the telomerase RNA (TERC), and the catalytic unit of telomerase (TERT) are part of a ribonucleoprotein complex, the telomerase enzyme, that is essential for the elongation and maintenance of chromosome ends or telomeres. All patients with DC have excessively short telomeres, indicating that the underlying defect in these individuals is an inability to maintain the telomeres. The purpose of the current review is to highlight recent insights into the molecular pathogenesis of DC. We discuss the impact these findings have on our current understanding of telomere function and maintenance, and on the diagnosis, management, and treatment of patients with conditions caused by dysfunctional telomeres.
引用
收藏
页码:159 / 170
页数:12
相关论文
共 109 条
[1]   Molecular medicine and bone marrow failure syndromes [J].
Alter, BP .
JOURNAL OF PEDIATRICS, 2000, 136 (03) :275-276
[2]  
ALTER BP, 1996, ONCOLOGIST, V1, P361
[3]  
ALTER BP, 1998, HEMATOLOGY INFANCY C, P216
[4]   Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice [J].
Artandi, SE ;
Chang, S ;
Lee, SL ;
Alson, S ;
Gottlieb, GJ ;
Chin, L ;
DePinho, RA .
NATURE, 2000, 406 (6796) :641-645
[5]   Constitutive telomerase expression promotes mammary carcinomas in aging mice [J].
Artandi, SE ;
Alson, S ;
Tietze, MK ;
Sharpless, NE ;
Ye, S ;
Greenberg, RA ;
Castrillon, DH ;
Horner, JW ;
Weiler, SR ;
Carrasco, RD ;
DePinho, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :8191-8196
[6]   A critical role for telomeres in suppressing and facilitating carcinogenesis [J].
Artandi, SE ;
DePinho, RA .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2000, 10 (01) :39-46
[7]   Extension of life-span by introduction of telomerase into normal human cells [J].
Bodnar, AG ;
Ouellette, M ;
Frolkis, M ;
Holt, SE ;
Chiu, CP ;
Morin, GB ;
Harley, CB ;
Shay, JW ;
Lichtsteiner, S ;
Wright, WE .
SCIENCE, 1998, 279 (5349) :349-352
[8]   Telomere length in leukocyte subpopulations of patients with aplastic anemia [J].
Brümmendorf, TH ;
Maciejewski, JP ;
Mak, J ;
Young, NS ;
Lansdorp, PM .
BLOOD, 2001, 97 (04) :895-900
[9]   The telomere lengthening mechanism in telomerase-negative immortal human cells does not involve the telomerase RNA subunit [J].
Bryan, TM ;
Marusic, L ;
Bacchetti, S ;
Namba, M ;
Reddel, RR .
HUMAN MOLECULAR GENETICS, 1997, 6 (06) :921-926
[10]   Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines [J].
Bryan, TM ;
Englezou, A ;
DallaPozza, L ;
Dunham, MA ;
Reddel, RR .
NATURE MEDICINE, 1997, 3 (11) :1271-1274