The use of in situ techniques in R&D of Li and Mg rechargeable batteries

被引:71
作者
Amalraj, S. Francis [1 ]
Aurbach, Doron [1 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
关键词
In situ techniques; Rechargeable Li and Mg batteries; Surface analysis; Electrochemical systems; QUARTZ-CRYSTAL MICROBALANCE; ATOMIC-FORCE MICROSCOPY; REVERSIBLE MAGNESIUM DEPOSITION; COMPOSITE GRAPHITE-ELECTRODES; ABSORPTION FINE-STRUCTURE; SURFACE-FILM FORMATION; LITHIUM-ION BATTERIES; PC-BASED ELECTROLYTES; X-RAY-DIFFRACTION; CATHODE MATERIALS;
D O I
10.1007/s10008-011-1324-9
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Rechargeable batteries are complicated devices in which three bulk zones (electrodes, electrolyte solution) and two interfaces have to work simultaneously and coherently, without any side reactions. The study of electrode materials and electrode-solution interfaces of rechargeable batteries requires the use of first-rate techniques for structure and surface analysis, in conjunction with electrochemical methods. The use of in situ techniques in which spectroscopy, diffractometry, or microscopy are measured in conjunction with an electrochemical response may be highly important and beneficial for battery research. We review herein the use of in situ Fourier transform-infrared spectroscopy, Raman, X-ray absorption, mass spectrometry, X-ray diffraction, atomic force microscopy, scanning tunneling microscopy, and electrochemical quartz crystal microbalance techniques for research and development of rechargeable Li and Mg batteries.
引用
收藏
页码:877 / 890
页数:14
相关论文
共 102 条
[1]   DIRECTIONS IN SECONDARY LITHIUM BATTERY RESEARCH-AND-DEVELOPMENT [J].
ABRAHAM, KM .
ELECTROCHIMICA ACTA, 1993, 38 (09) :1233-1248
[2]   Electrochemical, 6Li MAS NMR, and X-ray and neutron diffraction study of LiCoxFeyMn2-(x+y)O4 spinel oxides for high-voltage cathode materials [J].
Alcántara, R ;
Jaraba, M ;
Lavela, P ;
Tirado, JL .
CHEMISTRY OF MATERIALS, 2003, 15 (05) :1210-1216
[3]   Anion intercalation into highly oriented pyrolytic graphite studied by electrochemical atomic force microscopy [J].
Alliata, D ;
Häring, P ;
Haas, O ;
Kötz, R ;
Siegenthaler, H .
ELECTROCHEMISTRY COMMUNICATIONS, 1999, 1 (01) :5-9
[4]   The study of surface film formation on noble-metal electrodes in alkyl carbonates/Li salt solutions, using simultaneous in situ AFM, EQCM, FTIR, and EIS [J].
Aurbach, D ;
Moshkovich, M ;
Cohen, Y ;
Schechter, A .
LANGMUIR, 1999, 15 (08) :2947-2960
[5]   A short review on the comparison between Li battery systems and rechargeable magnesium battery technology [J].
Aurbach, D ;
Gofer, Y ;
Lu, Z ;
Schechter, A ;
Chusid, O ;
Gizbar, H ;
Cohen, Y ;
Ashkenazi, V ;
Moshkovich, M ;
Turgeman, R ;
Levi, E .
JOURNAL OF POWER SOURCES, 2001, 97-8 :28-32
[6]   THE STUDY OF LI-GRAPHITE INTERCALATION PROCESSES IN SEVERAL ELECTROLYTE SYSTEMS USING IN-SITU X-RAY-DIFFRACTION [J].
AURBACH, D ;
EINELI, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (06) :1746-1752
[7]   IN-SITU FTIR SPECTROELECTROCHEMICAL STUDIES OF SURFACE-FILMS FORMED ON LI AND NONACTIVE ELECTRODES AT LOW POTENTIALS IN LI SALT-SOLUTIONS CONTAINING CO2 [J].
AURBACH, D ;
CHUSID, O .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (11) :L155-L157
[8]   Nonaqueous magnesium electrochemistry and its application in secondary batteries [J].
Aurbach, D ;
Weissman, I ;
Gofer, Y ;
Levi, E .
CHEMICAL RECORD, 2003, 3 (01) :61-73
[9]   The study of electrolyte solutions based on solvents from the ''glyme'' family (linear polyethers) for secondary Li battery systems [J].
Aurbach, D ;
Granot, E .
ELECTROCHIMICA ACTA, 1997, 42 (04) :697-718
[10]   Morphological studies of Li deposition processes in LiAsF6/PC solutions by in situ atomic force microscopy [J].
Aurbach, D ;
Cohen, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (10) :3355-3360