Characterizing the relationships between soil organic matter components and microbial function and composition along a tillage disturbance gradient

被引:182
作者
Cookson, W. Richard [1 ]
Murphy, Daniel V. [1 ]
Roper, Margaret M. [2 ]
机构
[1] Univ Western Australia, Fac Nat & Agr Sci, Sch Earth & Geog Sci, Crawley, WA 6009, Australia
[2] CSIRO Plant Ind, Wembley, WA 6913, Australia
基金
澳大利亚研究理事会;
关键词
PLFA; CLPP; light fraction organic matter; dissolved organic matter; N-15 pool dilution; tillage;
D O I
10.1016/j.soilbio.2007.10.011
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
We studied the effect of no-till (disc seeder), conventional-till (tine scarifier + disc seeder) and rotary-till (rotary hoe + disc seeder) management oil soil organic matter (SOM) components, rates of carbon (C) and nitrogen (N) cycling, substrate utilization and microbial community composition. We hypothesized that labile SOM fractions are sensitive to changes in tillage techniques and, in turn mediate any tillage-induced changes in microbial function and composition. A replicated field site was established in May 1998 in the semi-arid agricultural region of Western Australia and soils were collected in September 2004. We found soil pH varied between different tillage techniques as ail initial lime application wits mixed to deeper soil depths in rotary-till soil than no-till and conventional-till soil. Total-C was greater in surface soil and lower in subsurface soil from no-till and conventional-till plots than from rotary-till plots, but there was no effect of tillage technique oil total-C when averaged across soil depths. Light (specific density 1.0 g cm(-3)) fraction organic matter (LFOM), dissolved organic matter (DOM) and microbial biomass (MB) C and N pools, and rates of C and N cycling all tended to decrease with soil depth. In general, LFOM-C and N, dissolved organic C (DOC) and microbial biomass carbon (MB-C), soil respiration, cellulase activity, gross immobilization rates were positively correlated (r>0.50) and were greater in no-till and conventional-till soil than rotary-till soil both within, and across soil depths. These soil variables generally increased (r>0.5) with increasing soil pH. Dissolved organic N and gross N mineralization were positively correlated (r>0.90) but neither was affected by tillage techniques. No-till soil had greater utilization of carboxylic acids and lower utilization of amino acids and carbohydrates than conventional-till and rotary-till soil; surface soil also had greater utilization of carboxylic acids than subsurface soil. In turn, substrate utilization differed between soil depths, and between no-till soil and conventional-till and rotary-till soil; these differences were correlated with soil pH, total-N, DOC, LFOM-N and microbial biomass nitrogen (MB-N). Bacterial and fungal biomasses generally decreased with soil depth and were greater in no-till and conventional-till soil than rotary-till soil. Microbial community composition differed between all tillage techniques and soil depths; these differences were correlated with soil textural classes, soil pH, and total, LFOM, DOM and microbial C and N pools. These results indicate that most tillage-induced changes to soil properties were associated with the greater soil disturbance under rotary-till than under no-till or conventional-till management. Our results indicate that tillage-induced changes to soil pH, and LFOM, DOM and microbial biomass pools are likely to be important regulators of the rates of C and N cycling, substrate utilization and microbial community composition in this coarse textured soil. Crown Copyright (c) 2007 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:763 / 777
页数:15
相关论文
共 68 条
[1]  
Alef K., 1995, METHODS APPL SOIL MI, P345
[2]   Assessment of soil particle redistribution on two contrasting cultivated hillslopes [J].
Ampontuah, Emmanuel O. ;
Robinson, J. S. ;
Nortcliff, S. .
GEODERMA, 2006, 132 (3-4) :324-343
[3]  
Anderson MJ, 2003, ECOLOGY, V84, P511, DOI 10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO
[4]  
2
[5]   Permutation tests for univariate or multivariate analysis of variance and regression [J].
Anderson, MJ .
CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 2001, 58 (03) :626-639
[6]   A new method for non-parametric multivariate analysis of variance [J].
Anderson, MJ .
AUSTRAL ECOLOGY, 2001, 26 (01) :32-46
[7]   Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH [J].
Andersson, S ;
Nilsson, SI ;
Saetre, P .
SOIL BIOLOGY & BIOCHEMISTRY, 2000, 32 (01) :1-10
[8]   Impact of tillage practices on organic carbon and nitrogen storage in cool, humid soils of eastern Canada [J].
Angers, DA ;
Bolinder, MA ;
Carter, MR ;
Gregorich, EG ;
Drury, CF ;
Liang, BC ;
Voroney, RP ;
Simard, RR ;
Donald, RG ;
Beyaert, RP ;
Martel, J .
SOIL & TILLAGE RESEARCH, 1997, 41 (3-4) :191-201
[9]   CHARACTERIZATION OF BENTHIC MICROBIAL COMMUNITY STRUCTURE BY HIGH-RESOLUTION GAS-CHROMATOGRAPHY OF FATTY-ACID METHYL-ESTERS [J].
BOBBIE, RJ ;
WHITE, DC .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1980, 39 (06) :1212-1222
[10]   LIGHT-FRACTION SOIL ORGANIC-MATTER - ORIGIN AND CONTRIBUTION TO NET NITROGEN MINERALIZATION [J].
BOONE, RD .
SOIL BIOLOGY & BIOCHEMISTRY, 1994, 26 (11) :1459-1468