Application of SAXS to the study of particle-size-dependent thermal conductivity in silica nanofluids

被引:87
作者
Chen, Gang [1 ]
Yu, Wenhua [2 ]
Singh, Dileep [3 ]
Cookson, David [4 ]
Routbort, Jules [2 ]
机构
[1] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA
[2] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA
[3] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA
[4] Australian Nucl Sci & Technol Org, Australian Synchrotron Res Program, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
nanofluid; thermal conductivity; size effect; interface; SAXS; silica colloids; nanoparticles; dispersion;
D O I
10.1007/s11051-007-9347-y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Knowledge of the size and distribution of nanoparticles in solution is critical to understanding the observed enhancements in thermal conductivity and heat transfer of nanofluids. We have applied smallangle X-ray scattering (SAXS) to the characterization of SiO2 nanoparticles (10-30 nm) uniformly dispersed in a water-based fluid using the Advanced Photon Source at Argonne National Laboratory. Size distributions for the suspended nanoparticles were derived by fitting experimental data to an established model. Thermal conductivity of the SiO2 nanofluids was also measured, and the relation between the average particle size and the thermal conductivity enhancement was established. The experimental data contradict models based on fluid interfacial layers or Brownian motion but support the concept of thermal resistance at the liquid-particle interface.
引用
收藏
页码:1109 / 1114
页数:6
相关论文
共 25 条
[1]   Particle size distributions from small-angle scattering using global scattering functions [J].
Beaucage, G ;
Kammler, HK ;
Pratsinis, SE .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2004, 37 :523-535
[2]   Strategies for data collection and calibration with a pinhole-geometry SAXS instrument on a synchrotron beamline [J].
Cookson, David ;
Kirby, Nigel ;
Knott, Robert ;
Lee, Myungae ;
Schultz, David .
JOURNAL OF SYNCHROTRON RADIATION, 2006, 13 :440-444
[3]   Temperature dependence of thermal conductivity enhancement for nanofluids [J].
Das, SK ;
Putra, N ;
Thiesen, P ;
Roetzel, W .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2003, 125 (04) :567-574
[4]   Interfacial heat flow in carbon nanotube suspensions [J].
Huxtable, ST ;
Cahill, DG ;
Shenogin, S ;
Xue, LP ;
Ozisik, R ;
Barone, P ;
Usrey, M ;
Strano, MS ;
Siddons, G ;
Shim, M ;
Keblinski, P .
NATURE MATERIALS, 2003, 2 (11) :731-734
[5]  
ILAVSKY J, 2005, IRENA VERSION 2 10
[6]   Role of Brownian motion in the enhanced thermal conductivity of nanofluids [J].
Jang, SP ;
Choi, SUS .
APPLIED PHYSICS LETTERS, 2004, 84 (21) :4316-4318
[7]   A new thermal conductivity model for nanofluids [J].
Koo, J ;
Kleinstreuer, C .
JOURNAL OF NANOPARTICLE RESEARCH, 2004, 6 (06) :577-588
[8]   Measuring thermal conductivity of fluids containing oxide nanoparticles [J].
Lee, S ;
Choi, SUS ;
Li, S ;
Eastman, JA .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1999, 121 (02) :280-289
[9]  
LIDE DR, 1997, HDB CHEM PHYS, P12
[10]  
Maxwell J. C., 1881, TREATISE ELECT MAGNE, V1