Oligo(fluorenyl) pyridine ligands and their tris-cyclometalated iridium(III) complexes: synthesis, photophysical properties and electrophosphorescent devices

被引:44
作者
Tavasli, M
Bettington, S
Bryce, MR
Al Attar, HA
Dias, FB
King, S
Monkman, AP
机构
[1] Univ Durham, Dept Chem, Durham DH1 3LE, England
[2] Univ Durham, Dept Phys, Durham DH1 3LE, England
关键词
D O I
10.1039/b507990j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The new extended tri- and penta-fluorenylpyridine ligands Fl(3)Py 2 and Fl(5)Py 3 and their tris-cyclometalated iridium(III) complexes Ir[Fl(3)Py](3) 5 and Ir[Fl(5)Py](3) 6 have been synthesised and their properties compared with the known iridium( III) complex Ir[Fl(1)Py](3) 4. The lowest energy (emissive) excited states of the complexes 4-6 are dominated by ligand centred (LC) (3)pi ->pi* triplet states, as observed for their uncomplexed ligands 1-3. The emission maximum of complex 4 is similar to 546 nm with a triplet lifetime of 2.8 mu s. For complexes 5 and 6 the emission maxima are both similar to 566 nm with triplet lifetimes of 7.4 mu s and 7.8 mu s, respectively. Devices made from poly(9,9'-spirobifluorene) (PSF) as the host and doped with complexes 4-6 show good stability; the EL spectra are unchanged after repeated operation over several days. Devices containing complexes 5 and 6 exhibit higher external quantum efficiency (EQE) values. Turn-on voltages of similar to 3 V, giving an EQE of 2.8% at a current density of 30 mA cm(-2), with a power efficiency of 4.3 lm W(-1) and electroluminescence (EL) intensity of 25 000 cd m(-2) at 550 mA cm(-2) were observed for ITO/PEDOT : PSS/PSF : 6/Ca/Al devices.
引用
收藏
页码:4963 / 4970
页数:8
相关论文
共 55 条
[1]   High-efficiency red electrophosphorescence devices [J].
Adachi, C ;
Baldo, MA ;
Forrest, SR ;
Lamansky, S ;
Thompson, ME ;
Kwong, RC .
APPLIED PHYSICS LETTERS, 2001, 78 (11) :1622-1624
[2]   Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J].
Adachi, C ;
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5048-5051
[3]   Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials [J].
Adachi, C ;
Kwong, RC ;
Djurovich, P ;
Adamovich, V ;
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
APPLIED PHYSICS LETTERS, 2001, 79 (13) :2082-2084
[4]   Monodisperse fluorene oligomers exhibiting strong dipolar coupling interactions [J].
Anémian, R ;
Mulatier, JC ;
Andraud, C ;
Stéphan, O ;
Vial, JC .
CHEMICAL COMMUNICATIONS, 2002, (15) :1608-1609
[5]   Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J].
Baldo, MA ;
Lamansky, S ;
Burrows, PE ;
Thompson, ME ;
Forrest, SR .
APPLIED PHYSICS LETTERS, 1999, 75 (01) :4-6
[6]   Highly efficient phosphorescent emission from organic electroluminescent devices [J].
Baldo, MA ;
O'Brien, DF ;
You, Y ;
Shoustikov, A ;
Sibley, S ;
Thompson, ME ;
Forrest, SR .
NATURE, 1998, 395 (6698) :151-154
[7]   Synthesis and characterization of phosphorescent cyclometalated platinum complexes [J].
Brooks, J ;
Babayan, Y ;
Lamansky, S ;
Djurovich, PI ;
Tsyba, I ;
Bau, R ;
Thompson, ME .
INORGANIC CHEMISTRY, 2002, 41 (12) :3055-3066
[8]   ELECTROLUMINESCENCE FROM TRAP-LIMITED CURRENT TRANSPORT IN VACUUM-DEPOSITED ORGANIC LIGHT-EMITTING DEVICES [J].
BURROWS, PE ;
FORREST, SR .
APPLIED PHYSICS LETTERS, 1994, 64 (17) :2285-2287
[9]   Improved quantum efficiency for electroluminescence in semiconducting polymers [J].
Cao, Y ;
Parker, ID ;
Yu, G ;
Zhang, C ;
Heeger, AJ .
NATURE, 1999, 397 (6718) :414-417
[10]  
CHAN TH, 1979, SYNTHESIS-STUTTGART, P761