Fidelity of DNA polymerase δ holoenzyme from Saccharomyces cerevisiae:: The sliding clamp proliferating cell nuclear antigen decreases its fidelity

被引:25
作者
Hashimoto, K
Shimizu, K
Nakashima, N
Sugino, A
机构
[1] Osaka Univ, Labs Biomol Networks, Grad Sch Frontier Biosci, Suita, Osaka 5650871, Japan
[2] Osaka Univ, Radioisotope Res Ctr, Suita, Osaka 5650871, Japan
[3] Nippon Med Coll, Kanagawa, Japan
关键词
D O I
10.1021/bi0348359
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA polymerases delta and epsilon (pol delta and epsilon) are the two major replicative polymerases in the budding yeast Saccharomyces cerevisiae. The fidelity of pol delta is influenced by its 3'-5' proofreading exonuclease activity, which corrects misinsertion errors, and by enzyme cofactors. PCNA is a pol delta cofactor, called the sliding clamp, which increases the processivity of pol delta holoenzyme. This study measures the fidelity of 3'-5' exonuclease-proficient and -deficient pol delta holoenzyme using a synthetic 30mer primer/ 100mer template in the presence and absence of PCNA. Although PCNA increases pol delta processivity, the presence of PCNA decreased pol delta fidelity 2-7-fold. In particular, wild-type pol delta demonstrated the following nucleotide substitution efficiencies for mismatches in the absence of PCNA: G(.)G, 0.728 x 10(-4); T(.)G, 1.82 x 10(-4); A(.)G, <0.01 x 10(-4). In the presence of PCNA these values increased as follows: G(.)G, 1.30 x 10(-4); T(.)G, 2.62 x 10(-4); A(.)G, 0.074 x 10(-4). A similar but smaller effect was observed for exonuclease-deficient pol delta (i.e., 2-4-fold increase in nucleotide substitution efficiencies in the presence of PCNA). Thus, the fidelity of wild-type pol delta in the presence of PCNA is more than 2 orders of magnitude lower than the fidelity of wild-type pol is holoenzyme and is comparable to the fidelity of exonuclease-deficient pol epsilon holoenzyme.
引用
收藏
页码:14207 / 14213
页数:7
相关论文
共 30 条
[1]   Components and dynamics of DNA replication complexes in S-cerevisiae: Redistribution of MCM proteins and Cdc45p during S phase [J].
Aparicio, OM ;
Weinstein, DM ;
Bell, SP .
CELL, 1997, 91 (01) :59-69
[2]   DNA POLYMERASE-II, THE PROBABLE HOMOLOG OF MAMMALIAN DNA POLYMERASE-EPSILON, REPLICATES CHROMOSOMAL DNA IN THE YEAST SACCHAROMYCES-CEREVISIAE [J].
ARAKI, H ;
ROPP, PA ;
JOHNSON, AL ;
JOHNSTON, LH ;
MORRISON, A ;
SUGINO, A .
EMBO JOURNAL, 1992, 11 (02) :733-740
[3]   RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes [J].
Bae, SH ;
Bae, KH ;
Kim, JA ;
Seo, YS .
NATURE, 2001, 412 (6845) :456-461
[4]   Fidelity of Escherichia coli DNA polymerase III holoenzyme - The effects of beta,gamma complex processivity proteins and epsilon proofreading exonuclease on nucleotide misincorporation efficiencies [J].
Bloom, LB ;
Chen, XL ;
Fygenson, DK ;
Turner, F ;
ODonnell, M ;
Goodman, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (44) :27919-27930
[5]   STRUCTURE AND FUNCTION OF THE SACCHAROMYCES-CEREVISIAE CDC2 GENE ENCODING THE LARGE SUBUNIT OF DNA POLYMERASE-III [J].
BOULET, A ;
SIMON, M ;
FAYE, G ;
BAUER, GA ;
BURGERS, PMJ .
EMBO JOURNAL, 1989, 8 (06) :1849-1854
[6]  
BURGERS PMJ, 1991, J BIOL CHEM, V266, P22698
[7]  
BURGERS PMJ, 1993, J BIOL CHEM, V268, P19923
[8]   Fidelity of eucaryotic DNA polymerase δ holoenzyme from Schizosaccharomyces pombe [J].
Chen, XL ;
Zuo, SJ ;
Kelman, Z ;
O'Donnell, M ;
Hurwitz, J ;
Goodman, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (23) :17677-17682
[9]   Dinucleotide repeat expansion catalyzed by bacteriophage T4 DNA polymerase in vitro [J].
da Silva, EF ;
Reha-Krantz, LJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (40) :31528-31535
[10]   Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol ε and its unexpected ability to support growth in the absence of the DNA polymerase domain [J].
Dua, R ;
Levy, DL ;
Campbell, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (32) :22283-22288