Enthalpy of helix-coil transition: Missing link in rationalizing the thermodynamics of helix-forming propensities of the amino acid residues

被引:48
作者
Richardson, JM [1 ]
Lopez, MM [1 ]
Makhatadze, GI [1 ]
机构
[1] Penn State Univ, Dept Biochem & Mol Biol, Coll Med, Hershey, PA 17033 USA
关键词
protein stability; thermodynamics; calorimetry;
D O I
10.1073/pnas.0408004102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is known that different amino acid residues have effects on the thermodynamic stability of an a-helix. The underlying mechanism for the thermodynamic helical propensity is not well understood. The major accepted hypothesis is the difference in the side-chain configurational entropy loss upon helix formation. However, the changes in the side-chain configurational entropy explain only part of the thermodynamic helical propensity, thus implying that there must be a difference in the enthalpy of helix-coil transition for different residues. This work provides an experimental test to this hypothesis. Direct calorimetric measurements of folding of a model host peptide in which the helix formation is induced by metal binding is applied to a wide range of residue types, both naturally occurring and nonnatural, at the guest site. Based on the calorimetric results for 12 peptides, it was found that indeed there is a difference in the enthalpy of helix-coil transition for different amino acid residues, and simple empirical rules that define these differences are presented. The obtained difference in the enthalpies of helix-coil transition complement the differences in configurational entropies and provide the complete thermodynamic characterization of the helix-forming tendencies.
引用
收藏
页码:1413 / 1418
页数:6
相关论文
共 42 条
[1]   Role of backbone solvation and electrostatics in generating preferred peptide backbone conformations: Distributions of phi [J].
Avbelj, F ;
Baldwin, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (10) :5742-5747
[2]   Energetics of the interaction between water and the helical peptide group and its role in determining helix propensities [J].
Avbelj, F ;
Luo, PZ ;
Baldwin, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (20) :10786-10791
[3]   Origin of the neighboring residue effect on peptide backbone conformation [J].
Avbelj, F ;
Baldwin, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (30) :10967-10972
[4]   In search of the energetic role of peptide hydrogen bonds [J].
Baldwin, RL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (20) :17581-17588
[5]   Is protein folding hierarchic? I. Local structure and peptide folding [J].
Baldwin, RL ;
Rose, GD .
TRENDS IN BIOCHEMICAL SCIENCES, 1999, 24 (01) :26-33
[6]   DETERMINATION OF ALPHA-HELIX PROPENSITY WITHIN THE CONTEXT OF A FOLDED PROTEIN - SITES 44 AND 131 IN BACTERIOPHAGE-T4 LYSOZYME [J].
BLABER, M ;
ZHANG, XJ ;
LINDSTROM, JD ;
PEPIOT, SD ;
BAASE, WA ;
MATTHEWS, BW .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 235 (02) :600-624
[7]   STABILITY OF ALPHA-HELICES [J].
CHAKRABARTTY, A ;
BALDWIN, RL .
ADVANCES IN PROTEIN CHEMISTRY, VOL 46, 1995, 46 :141-176
[8]   Circular dichroism spectra of short, fixed-nucleus alanine helices [J].
Chin, DH ;
Woody, RW ;
Rohl, CA ;
Baldwin, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (24) :15416-15421
[9]   SIDE-CHAIN ENTROPY OPPOSES ALPHA-HELIX FORMATION BUT RATIONALIZES EXPERIMENTALLY DETERMINED HELIX-FORMING PROPENSITIES [J].
CREAMER, TP ;
ROSE, GD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (13) :5937-5941
[10]   ALPHA-HELIX-FORMING PROPENSITIES IN PEPTIDES AND PROTEINS [J].
CREAMER, TP ;
ROSE, GD .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1994, 19 (02) :85-97