Comparison of Spatiotemporal Fusion Models: A Review

被引:175
作者
Chen, Bin [1 ]
Huang, Bo [2 ,3 ]
Xu, Bing [1 ,4 ]
机构
[1] Beijing Normal Univ, State Key Lab Remote Sensing Sci, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R China
[2] Chinese Univ Hong Kong, Dept Geog & Resource Management, Shatin, Hong Kong, Peoples R China
[3] Chinese Univ Hong Kong, Inst Space & Earth Informat Sci, Shatin, Hong Kong, Peoples R China
[4] Tsinghua Univ, Minist Educ Key Lab Earth Syst Modelling, Ctr Earth Syst Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
LAND-SURFACE TEMPERATURE; POYANG LAKE AREA; REFLECTANCE FUSION; IMAGE FUSION; TIME-SERIES; VEGETATION PHENOLOGY; TEMPORAL RESOLUTION; BLENDING LANDSAT; MODIS DATA; LANDSCAPE;
D O I
10.3390/rs70201798
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Simultaneously capturing spatial and temporal dynamics is always a challenge for the remote sensing community. Spatiotemporal fusion has gained wide interest in various applications for its superiority in integrating both fine spatial resolution and frequent temporal coverage. Though many advances have been made in spatiotemporal fusion model development and applications in the past decade, a unified comparison among existing fusion models is still limited. In this research, we classify the models into three categories: transformation-based, reconstruction-based, and learning-based models. The objective of this study is to (i) compare four fusion models (STARFM, ESTARFM, ISTAFM, and SPSTFM) under a one Landsat-MODIS (L-M) pair prediction mode and two L-M pair prediction mode using time-series datasets from the Coleambally irrigation area and Poyang Lake wetland; (ii) quantitatively assess prediction accuracy considering spatiotemporal comparability, landscape heterogeneity, and model parameter selection; and (iii) discuss the advantages and disadvantages of the three categories of spatiotemporal fusion models.
引用
收藏
页码:1798 / 1835
页数:38
相关论文
共 67 条
[1]   The assessment of multi-sensor image fusion using wavelet transforms for mapping the Brazilian Savanna [J].
Acerbi-Junior, F. W. ;
Clevers, J. G. P. W. ;
Schaepman, M. E. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2006, 8 (04) :278-288
[2]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[3]   MODTRAN4-based atmospheric correction algorithm: FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) [J].
Anderson, GP ;
Felde, GW ;
Hoke, ML ;
Ratkowski, AJ ;
Cooley, T ;
Chetwynd, JH ;
Gardner, JA ;
Alder-Golden, SM ;
Matthew, MW ;
Berk, A ;
Bernstein, LS ;
Acharya, PK ;
Miller, D ;
Lewis, P .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY VIII, 2002, 4725 :65-71
[4]   Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery [J].
Anderson, M. C. ;
Kustas, W. P. ;
Norman, J. M. ;
Hain, C. R. ;
Mecikalski, J. R. ;
Schultz, L. ;
Gonzalez-Dugo, M. P. ;
Cammalleri, C. ;
d'Urso, G. ;
Pimstein, A. ;
Gao, F. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2011, 15 (01) :223-239
[5]  
[Anonymous], P S MACH PROC REM SE
[6]   MODTRAN4 radiative transfer modeling for atmospheric correction [J].
Berk, A ;
Anderson, GP ;
Bernstein, LS ;
Acharya, PK ;
Dothe, H ;
Matthew, MW ;
Adler-Golden, SM ;
Chetwynd, JH ;
Richtsmeier, SC ;
Pukall, B ;
Allred, CL ;
Jeong, LS ;
Hoke, ML .
OPTICAL SPECTROSCOPIC TECHNIQUES AND INSTRUMENTATION FOR ATMOSPHERIC AND SPACE RESEARCH III, 1999, 3756 :348-353
[7]   Preparing Landsat Image Time Series (LITS) for Monitoring Changes in Vegetation Phenology in Queensland, Australia [J].
Bhandari, Santosh ;
Phinn, Stuart ;
Gill, Tony .
REMOTE SENSING, 2012, 4 (06) :1856-1886
[8]   A COMPARISON OF SPOT AND LANDSAT-TM DATA FOR USE IN CONDUCTING INVENTORIES OF FOREST RESOURCES [J].
BROCKHAUS, JA ;
KHORRAM, S .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1992, 13 (16) :3035-3043
[9]   A data-model fusion approach for upscaling gross ecosystem productivity to the landscape scale based on remote sensing and flux footprint modelling [J].
Chen, B. ;
Ge, Q. ;
Fu, D. ;
Yu, G. ;
Sun, X. ;
Wang, S. ;
Wang, H. .
BIOGEOSCIENCES, 2010, 7 (09) :2943-2958
[10]  
Chen B., 2015, ISPRS J PHOTOG UNPUB