Connection between Feynman integrals having different values of the space-time dimension

被引:395
作者
Tarasov, OV
机构
[1] Deutsches Electronen-Synchrotron DESY, Institut für Hochenergiephysik IfH, Zeuthen, Zeuthen, D-15738
来源
PHYSICAL REVIEW D | 1996年 / 54卷 / 10期
关键词
D O I
10.1103/PhysRevD.54.6479
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A systematic algorithm for obtaining recurrence relations for dimensionally regularized Feynman integrals with respect to the space-time dimension d is proposed. The relation between d- and (d-2)-dimensional integrals is given in terms of a differential operator for which an explicit formula can be obtained for each Feynman diagram. We show how the method works for one-, two-, and three-loop integrals. The new recurrence relations with respect to d are complementary to the recurrence relations which derive from the method of integration by parts. We find that the problem of the irreducible numerators in Feynman integrals can be naturally solved in the framework of the proposed generalized recurrence relations.
引用
收藏
页码:6479 / 6490
页数:12
相关论文
共 33 条
[21]  
KAZAKOV DI, 1974, E28085 JINR
[22]  
Larin S., 1991, Technical Report NIKHEF-H-91-18
[23]   PHI3 THEORY IN 6 DIMENSIONS AND RENORMALIZATION GROUP [J].
MACFARLANE, AJ ;
WOO, G .
NUCLEAR PHYSICS B, 1974, B 77 (01) :91-108
[24]  
MACFARLANE AJ, 1975, NUCL PHYS B, VB 86, P548
[25]   REDUCTION OF FEYNMAN DIAGRAMS [J].
MELROSE, DB .
NUOVO CIMENTO A, 1965, 40 (01) :181-+
[26]  
REGGE T, 1968, LECT MATH PHYSICS, P955
[27]   RENORMALIZATION AND WARD IDENTITIES USING COMPLEX SPACE-TIME DIMENSION [J].
SPEER, ER .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (01) :1-6
[28]  
TARASOV OV, 1978, E211573 JINR
[29]  
TARASOV OV, IN PRESS NUCL PHYS B
[30]   REGULARIZATION AND RENORMALIZATION OF GAUGE FIELDS [J].
THOOFT, G ;
VELTMAN, M .
NUCLEAR PHYSICS B, 1972, B-44 (01) :189-+