Evaluation of automated electrospray-TOF mass spectrometryfor metabolic fingerprinting of the plant metabolome

被引:50
作者
Dunn, W. B. [2 ]
Overy, S. [1 ]
Quick, W. P. [1 ]
机构
[1] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England
[2] Univ Manchester, Dept Chem, Manchester M60 1QD, Lancs, England
基金
英国生物技术与生命科学研究理事会;
关键词
L; esculentum; pennellii; Electrospray Time-of-Flight Mass Spectrometry (ES-TOF-MS); metabolic fingerprinting; metabolomics;
D O I
10.1007/s11306-005-4433-6
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Metabolic fingerprinting is increasingly employed in microbial and plant metabolomics. Identification and evaluation of analytical factors that influence mass spectra produced with automated electrospray time of flight mass spectrometry to support metabolic fingerprinting are described. Instrument resolution of 4000 (FWHM) at mass 200 Da provided detection of ions of the same nominal mass but different monoisotopic masses. Complex mass spectra were obtained from polar extracts of tomato fruit in positive and negative ion mode. These spectra consist of metabolite ions (molecular, adduct and fragment) and those derived from the extraction medium, largely in the form of [M+H](+), [M-H](-), [M+Na](+), [M+K](+), [2M+H](+), [M+Cl](-) and [2M-H](-). Ionisation suppression reduced sensitivity, although its effect was consistent for a wide range of metabolite concentrations. Variability in ion signal intensity was lower in analytical (2.2-30.1%) compared to biological (within fruit 9.6-27.6%; between-fruit 13.2-34.4%) replicates. The method is applicable to high throughput metabolic fingerprinting and, with accurate mass measurements, is able to provide reductions in data complexity and preliminary identification of metabolites.
引用
收藏
页码:137 / 148
页数:12
相关论文
共 43 条
[1]  
Aharoni Asaph, 2002, OMICS A Journal of Integrative Biology, V6, P217, DOI 10.1089/15362310260256882
[2]   High-throughput classification of yeast mutants for functional genomics using metabolic footprinting [J].
Allen, J ;
Davey, HM ;
Broadhurst, D ;
Heald, JK ;
Rowland, JJ ;
Oliver, SG ;
Kell, DB .
NATURE BIOTECHNOLOGY, 2003, 21 (06) :692-696
[3]   Potential of metabolomics as a functional genomics tool [J].
Bino, RJ ;
Hall, RD ;
Fiehn, O ;
Kopka, J ;
Saito, K ;
Draper, J ;
Nikolau, BJ ;
Mendes, P ;
Roessner-Tunali, U ;
Beale, MH ;
Trethewey, RN ;
Lange, BM ;
Wurtele, ES ;
Sumner, LW .
TRENDS IN PLANT SCIENCE, 2004, 9 (09) :418-425
[4]   Minimum information about a microarray experiment (MIAME) - toward standards for microarray data [J].
Brazma, A ;
Hingamp, P ;
Quackenbush, J ;
Sherlock, G ;
Spellman, P ;
Stoeckert, C ;
Aach, J ;
Ansorge, W ;
Ball, CA ;
Causton, HC ;
Gaasterland, T ;
Glenisson, P ;
Holstege, FCP ;
Kim, IF ;
Markowitz, V ;
Matese, JC ;
Parkinson, H ;
Robinson, A ;
Sarkans, U ;
Schulze-Kremer, S ;
Stewart, J ;
Taylor, R ;
Vilo, J ;
Vingron, M .
NATURE GENETICS, 2001, 29 (04) :365-371
[5]   Metabolomics applications of FT-ICR mass spectrometry [J].
Brown, SC ;
Kruppa, G ;
Dasseux, JL .
MASS SPECTROMETRY REVIEWS, 2005, 24 (02) :223-231
[6]   Neonatal diagnosis of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency and implications for newborn screening by tandem mass spectrometry [J].
Carpenter, KH ;
Wilcken, B .
JOURNAL OF INHERITED METABOLIC DISEASE, 1999, 22 (07) :840-841
[7]   Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns [J].
Chace, DH ;
Kalas, TA ;
Naylor, EW .
CLINICAL CHEMISTRY, 2003, 49 (11) :1797-1817
[8]  
Chace DH, 2001, CLIN CHEM, V47, P2040
[9]  
Goodacre R, 1999, FEMS MICROBIOL LETT, V176, P17, DOI 10.1016/S0378-1097(99)00212-8
[10]   Metabolomics by numbers: acquiring and understanding global metabolite data [J].
Goodacre, R ;
Vaidyanathan, S ;
Dunn, WB ;
Harrigan, GG ;
Kell, DB .
TRENDS IN BIOTECHNOLOGY, 2004, 22 (05) :245-252