Substrate channeling and domain - Domain interactions in bifunctional thymidylate synthase - Dihydrofolate reductase

被引:57
作者
Liang, PH [1 ]
Anderson, KS [1 ]
机构
[1] Yale Univ, Sch Med, Dept Pharmacol, New Haven, CT 06520 USA
关键词
D O I
10.1021/bi9803168
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The thymidylate synthase (TS) and dihydrofolate reductase (DHFR) enzymes are found on a single polypeptide chain in several species of protozoa such as the parasitic Leishmania major. Earlier studies with the bifunctional TS-DHFR enzyme from L. major have suggested that this enzyme exhibits a phenomenon known as substrate channeling [Meek, T. D., et al. (1985) Biochemistry 24, 678-686]. This is a process by which a metabolite or intermediate is directly transferred from one enzyme active site to the next without being released free into solution. The crystal structure for the bifunctional TS-DHFR enzyme from L. major was recently solved, and it was shown that the TS active site was located 40 Angstrom from the DHFR active site [Knighton, D. R., et al. (1994) Nat. Struct. Biol. 1, 186-194]. On the basis of the crystal structure, a novel mechanism has been proposed for the channeling of the intermediate, dihydrofolate, from the TS active site to the DHFR active site [Knighton, D. R., et al. (1994) Not. Struct, Biol. 1, 186-194]. They suggest that the dihydrofolate is transferred via an "electrostatic" channel on the protein surface which connects the two active sites. In this report, we describe the use of a rapid transient kinetic analysis in examining the kinetics of substrate channeling as well as domain-domain interactions in the bifunctional TS-DHFR from L. major.
引用
收藏
页码:12195 / 12205
页数:11
相关论文
共 36 条
[1]  
ANDERSON KS, 1995, J BIOL CHEM, V270, P29936
[2]   A TETRAHEDRAL INTERMEDIATE IN THE EPSP SYNTHASE REACTION OBSERVED BY RAPID QUENCH KINETICS [J].
ANDERSON, KS ;
SIKORSKI, JA ;
JOHNSON, KA .
BIOCHEMISTRY, 1988, 27 (19) :7395-7406
[3]  
ANDERSON KS, 1991, J BIOL CHEM, V266, P8020
[4]   KINETIC AND STRUCTURAL-ANALYSIS OF ENZYME INTERMEDIATES - LESSONS FROM EPSP SYNTHASE [J].
ANDERSON, KS ;
JOHNSON, KA .
CHEMICAL REVIEWS, 1990, 90 (07) :1131-1149
[5]   EVALUATION OF 5-ENOLPYRUVOLYSHIKIMATE-3-PHOSPHATE SYNTHASE SUBSTRATE AND INHIBITOR BINDING BY STOPPED-FLOW AND EQUILIBRIUM FLUORESCENCE MEASUREMENTS [J].
ANDERSON, KS ;
SIKORSKI, JA ;
JOHNSON, KA ;
ANDERSON, KS ;
JOHNSON, KA .
BIOCHEMISTRY, 1988, 27 (05) :1604-1610
[6]  
ANDERSON KS, 1998, IN PRESS METHODS ENZ
[7]   ANALYSIS OF NUMERICAL-METHODS FOR COMPUTER-SIMULATION OF KINETIC PROCESSES - DEVELOPMENT OF KINSIM - A FLEXIBLE, PORTABLE SYSTEM [J].
BARSHOP, BA ;
WRENN, RF ;
FRIEDEN, C .
ANALYTICAL BIOCHEMISTRY, 1983, 130 (01) :134-145
[8]   ALLOSTERIC INTERACTIONS COORDINATE CATALYTIC ACTIVITY BETWEEN SUCCESSIVE METABOLIC ENZYMES IN THE TRYPTOPHAN SYNTHASE BIENZYME COMPLEX [J].
BRZOVIC, PS ;
NGO, K ;
DUNN, MF .
BIOCHEMISTRY, 1992, 31 (15) :3831-3839
[9]   EFFECT OF 5,10-METHYLENETETRAHYDROFOLATE ON DISSOCIATION OF 5-FLUORO-2'-DEOXYURIDYLATE FROM THYMIDYLATE SYNTHETASE - EVIDENCE FOR AN ORDERED MECHANISM [J].
DANENBERG, PV ;
DANENBERG, KD .
BIOCHEMISTRY, 1978, 17 (19) :4018-4024
[10]  
DONATO H, 1976, J BIOL CHEM, V251, P1303