Mef2s are required for thick filament formation in nascent muscle fibres

被引:108
作者
Hinits, Yaniv
Hughes, Simon M.
机构
[1] Kings Coll London, MRC, Ctr Dev Neurobiol, London SE1 1UL, England
[2] Kings Coll London, Randall Div Cell & Mol Biophys, London SE1 1UL, England
来源
DEVELOPMENT | 2007年 / 134卷 / 13期
基金
英国医学研究理事会;
关键词
Mef2c; Mef2d; myosin; muscle; zebrafish; myofibril; somite; tnnc; myogenin; hoover; prdm1; eng2a; acta1; actc1; smyhc1; myhz1; tpma; mybpc1; hsp90a;
D O I
10.1242/dev.007088
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
During skeletal muscle differentiation, the actomyosin motor is assembled into myofibrils, multiprotein machines that generate and transmit force to cell ends. How expression of muscle proteins is coordinated to build the myofibril is unknown. Here we show that zebrafish Mef2d and Mef2c proteins are required redundantly for assembly of myosin-containing thick filaments in nascent muscle fibres, but not for the earlier steps of skeletal muscle fibre differentiation, elongation, fusion or thin filament gene expression. mef2d mRNA and protein is present in myoblasts, whereas mef2c expression commences in muscle fibres. Knockdown of both Mef2s with antisense morpholino oligonucleotides or in mutant fish blocks muscle function and prevents sarcomere assembly. Cell transplantation and heat-shock-driven rescue reveal a cell-autonomous requirement for Mef2 within fibres. In nascent fibres, Mef2 drives expression of genes encoding thick, but not thin, filament proteins. Among genes analysed, myosin heavy and light chains and myosin-binding protein C require Mef2 for normal expression, whereas actin, tropomyosin and troponin do not. Our findings show that Mef2 controls skeletal muscle formation after terminal differentiation and define a new maturation step in vertebrate skeletal muscle development at which thick filament gene expression is controlled.
引用
收藏
页码:2511 / 2519
页数:9
相关论文
共 61 条
[1]   Adult myogenesis in Drosophila melanogaster can proceed independently of myocyte enhancer factor-2 [J].
Baker, PW ;
Tanaka, KKK ;
Klitgord, N ;
Cripps, RM .
GENETICS, 2005, 170 (04) :1747-1759
[2]   Role of the serum response factor in regulating contractile apparatus gene expression and sarcomeric integrity in cardiomyocytes [J].
Balza, RO ;
Misra, RP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (10) :6498-6510
[3]   Role of the myosin assembly protein UNC-45 as a molecular chaperone for myosin [J].
Barral, JM ;
Hutagalung, AH ;
Brinker, A ;
Hartl, FU ;
Epstein, HF .
SCIENCE, 2002, 295 (5555) :669-671
[4]  
Barresi MJF, 2000, DEVELOPMENT, V127, P2189
[5]   The B-cell maturation factor Blimp-1 specifies vertebrate slow-twitch muscle fiber identity in response to Hedgehog signaling [J].
Baxendale, S ;
Davison, C ;
Muxworthy, C ;
Wolff, C ;
Ingham, PW ;
Roy, S .
NATURE GENETICS, 2004, 36 (01) :88-93
[6]   MyoD, Myf5, and the calcineurin pathway activate the developmental myosin heavy chain genes [J].
Beylkin, Doris Heidysch ;
Allen, David L. ;
Leinwand, Leslie A. .
DEVELOPMENTAL BIOLOGY, 2006, 294 (02) :541-553
[7]   Transcription factor MEF2A mutations in patients with coronary artery disease [J].
Bhagavatula, MRK ;
Fan, C ;
Shen, GQ ;
Cassano, J ;
Plow, EF ;
Topol, EJ ;
Wang, Q .
HUMAN MOLECULAR GENETICS, 2004, 13 (24) :3181-3188
[8]   Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins [J].
Black, BL ;
Olson, EN .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :167-196
[9]   An initial blueprint for myogenic differentiation [J].
Blais, A ;
Tsikitis, M ;
Acosta-Alvear, D ;
Sharan, R ;
Kluger, Y ;
Dynlacht, BD .
GENES & DEVELOPMENT, 2005, 19 (05) :553-569
[10]   DROSOPHILA MEF2, A TRANSCRIPTION FACTOR THAT IS ESSENTIAL FOR MYOGENESIS [J].
BOUR, BA ;
OBRIEN, MA ;
LOCKWOOD, WL ;
GOLDSTEIN, ES ;
BODMER, R ;
TAGHERT, PH ;
ABMAYR, SM ;
NGUYEN, HT .
GENES & DEVELOPMENT, 1995, 9 (06) :730-741