Transport properties of a modified Lorentz gas

被引:79
作者
Larralde, H [1 ]
Leyvraz, F [1 ]
Mejía-Monasterio, C [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62210, Morelos, Mexico
关键词
transport laws; nonequilibrium steady states; Onsager symmetry; Green-Kubo formalism; Lorentz gas; entropy production;
D O I
10.1023/A:1025726905782
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a detailed study of the first simple mechanical system that shows fully realistic transport behavior while still being exactly solvable at the level of equilibrium statistical mechanics. The system under consideration is a Lorentz gas with fixed freely-rotating circular scatterers interacting with point particles via perfectly rough collisions. Upon imposing a temperature and/or a chemical potential gradient, a stationary state is attained for which local thermal equilibrium holds for low values of the imposed gradients. Transport in this system is normal, in the sense that the transport coefficients which characterize the flow of heat and matter are finite in the thermodynamic limit. Moreover, the two flows are non-trivially coupled, satisfying Onsager's reciprocity relations to within numerical accuracy as well as the Green - Kubo relations. We further show numerically that an applied electric field causes the same currents as the corresponding chemical potential gradient in first order of the applied field. Puzzling discrepancies in higher order effects ( Joule heating) are also observed. Finally, the role of entropy production in this purely Hamiltonian system is shortly discussed.
引用
收藏
页码:197 / 231
页数:35
相关论文
共 43 条
[1]   Heat conductivity and dynamical instability [J].
Alonso, D ;
Artuso, R ;
Casati, G ;
Guarneri, I .
PHYSICAL REVIEW LETTERS, 1999, 82 (09) :1859-1862
[2]   Fermi-Pasta-Ulam β model:: Boundary jumps, Fourier's law, and scaling [J].
Aoki, K ;
Kusnezov, D .
PHYSICAL REVIEW LETTERS, 2001, 86 (18) :4029-4032
[3]   Bulk properties of anharmonic chains in strong thermal gradients:: non-equilibrium φ4 theory [J].
Aoki, K ;
Kusnezov, D .
PHYSICS LETTERS A, 2000, 265 (04) :250-256
[4]  
BONETTO F, 2001, MATHPH0002052
[5]   Entropy production for open dynamical systems [J].
Breymann, WG ;
Tel, T ;
Vollmer, J .
PHYSICAL REVIEW LETTERS, 1996, 77 (14) :2945-2948
[6]   STATISTICAL PROPERTIES OF LORENTZ GAS WITH PERIODIC CONFIGURATION OF SCATTERERS [J].
BUNIMOVICH, LA ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 78 (04) :479-497
[7]   MARKOV PARTITIONS FOR DISPERSED BILLIARDS [J].
BUNIMOVICH, LA ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 78 (02) :247-280
[8]   ONE-DIMENSIONAL CLASSICAL MANY-BODY SYSTEM HAVING A NORMAL THERMAL-CONDUCTIVITY [J].
CASATI, G ;
FORD, J ;
VIVALDI, F ;
VISSCHER, WM .
PHYSICAL REVIEW LETTERS, 1984, 52 (21) :1861-1864
[9]   STEADY-STATE ELECTRICAL-CONDUCTION IN THE PERIODIC LORENTZ GAS [J].
CHERNOV, NI ;
EYINK, GL ;
LEBOWITZ, JL ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 154 (03) :569-601
[10]   DERIVATION OF OHM LAW IN A DETERMINISTIC MECHANICAL MODEL [J].
CHERNOV, NI ;
EYINK, GL ;
LEBOWITZ, JL ;
SINAI, YG .
PHYSICAL REVIEW LETTERS, 1993, 70 (15) :2209-2212