Fabrication of integrated microelectrodes for electrochemical detection on electrophoresis microchip by electroless deposition and micromolding in capillary technique

被引:72
作者
Yan, JL
Du, Y
Liu, JF
Cao, WD
Sun, SH
Zhou, WH
Yang, XR
Wang, EK [1 ]
机构
[1] Jilin Univ, Dept Mat Sci & Technol, Changchun 130021, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130021, Peoples R China
关键词
D O I
10.1021/ac034017m
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A new method for the fabrication of an integrated microelectrode for electrochemical detection (ECD) on an electrophoresis microchip is described. The pattern of the microelectrode was directly made on the surface of a microscope slide through an electroless deposition procedure. The surface of the slide was first selectively coated with a thin layer of sodium silicate through a micromolding in capillary technique provided by a poly(dimethylsiloxane) (PDMS) microchannel; this left a rough patterned area for the anchoring of catalytic particles. A metal layer was deposited on the pattern guided by these catalytic particles and was used as the working electrode. Factors influencing the fabrication procedure were discussed. The whole chip was built by reversibly sealing the slide to another PDMS layer with electrophoresis microchannels at room temperature. This approach eliminates the need of clean room facilities and expensive apparatus such as for vacuum deposition or sputtering and makes it possible to produce patterned electrodes suitable for ECD on microchip under ordinary chemistry laboratory conditions. Also once the micropattern is ready, it allows the researchers to rebuild the electrode in a short period of time when an electrode failure occurs. Copper and gold microelectrodes were fabricated by this technique. Glucose, dopamine, and catechol as model analytes were tested.
引用
收藏
页码:5406 / 5412
页数:7
相关论文
共 55 条
[1]   Micro total analysis systems. 2. Analytical standard operations and applications [J].
Auroux, PA ;
Iossifidis, D ;
Reyes, DR ;
Manz, A .
ANALYTICAL CHEMISTRY, 2002, 74 (12) :2637-2652
[2]   A chip-based electrophoresis system with electrochemical detection and hydrodynamic injection [J].
Backofen, U ;
Matysik, FM ;
Lunte, CE .
ANALYTICAL CHEMISTRY, 2002, 74 (16) :4054-4059
[3]   Fully integrated on-chip electrochemical detection for capillary electrophoresis in a microfabricated device [J].
Baldwin, RP ;
Roussel, TJ ;
Crain, MM ;
Bathlagunda, V ;
Jackson, DJ ;
Gullapalli, J ;
Conklin, JA ;
Pai, R ;
Naber, JF ;
Walsh, KM ;
Keynton, RS .
ANALYTICAL CHEMISTRY, 2002, 74 (15) :3690-3697
[4]   Electrochemical determination of carbohydrates: Enzyme electrodes and amperometric detection in liquid chromatography and capillary electrophoresis [J].
Baldwin, RP .
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 1999, 19 (1-2) :69-81
[5]   Analytic chemistry: Everyone's a (future) chemist [J].
Burns, MA .
SCIENCE, 2002, 296 (5574) :1818-1819
[6]   Microfabricated polymer devices for automated sample delivery of peptides for analysis by electrospray ionization tandem mass spectrometry [J].
Chan, JH ;
Timperman, AT ;
Qin, D ;
Aebersold, R .
ANALYTICAL CHEMISTRY, 1999, 71 (20) :4437-4444
[7]   Microchip devices for high-efficiency separations [J].
Culbertson, CT ;
Jacobson, SC ;
Ramsey, JM .
ANALYTICAL CHEMISTRY, 2000, 72 (23) :5814-5819
[8]  
Dolník V, 2000, ELECTROPHORESIS, V21, P41, DOI 10.1002/(SICI)1522-2683(20000101)21:1<41::AID-ELPS41>3.0.CO
[9]  
2-7
[10]  
Dou YH, 2002, ELECTROPHORESIS, V23, P3558, DOI 10.1002/1522-2683(200210)23:20<3558::AID-ELPS3558>3.0.CO