A comprehensive two-hybrid analysis to explore the yeast protein interactome

被引:2666
作者
Ito, T
Chiba, T
Ozawa, R
Yoshida, M
Hattori, M
Sakaki, Y
机构
[1] Kanazawa Univ, Canc Res Inst, Div Genome Biol, Kanazawa, Ishikawa 9200934, Japan
[2] RIKEN, Genom Sci Ctr, Human Genome Res Grp, Yokohama, Kanagawa 2300045, Japan
[3] Web & Genome Informat Corp, INTEC, Tokyo 1360075, Japan
[4] Univ Tokyo, Inst Med Sci, Human Genome Ctr, Tokyo 1088639, Japan
关键词
D O I
10.1073/pnas.061034498
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein-protein interactions play crucial roles in the execution of various biological functions. Accordingly, their comprehensive description would contribute considerably to the functional interpretation of fully sequenced genomes, which are flooded with novel genes of unpredictable functions. We previously developed a system to examine two-hybrid interactions in all possible combinations between the approximate to6,000 proteins of the budding yeast Saccharomyces cerevisiae. Here we have completed the comprehensive analysis using this system to identify 4,549 two-hybrid interactions among 3,278 proteins. Unexpectedly, these data do not largely overlap with those obtained by the other project [Uetz, P,, et al. (2000) Nature (London) 403, 623-627] and hence have substantially expanded our knowledge on the protein interaction space or interactome of the yeast. Cumulative connection of these binary interactions generates a single huge network linking the vast majority of the proteins. Bioinformatics-aided selection of biologically relevant interactions highlights various intriguing subnetworks. They include, for instance, the one that had successfully foreseen the involvement of a novel protein in spindle pole body function as well as the one that may uncover a hitherto unidentified multiprotein complex potentially participating in the process of vesicular transport. Our data would thus significantly expand and improve the protein interaction map for the exploration of genome functions that eventually leads to thorough understanding of the cell as a molecular system.
引用
收藏
页码:4569 / 4574
页数:6
相关论文
共 34 条
[1]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[2]   The Yeast Proteome Database (YPD) and Caenorhabditis elegans Proteome Database (WormPD):: comprehensive resources for the organization and comparison of model organism protein information [J].
Costanzo, MC ;
Hogan, JD ;
Cusick, ME ;
Davis, BP ;
Fancher, AM ;
Hodges, PE ;
Kondu, P ;
Lengieza, C ;
Lew-Smith, JE ;
Lingner, C ;
Roberg-Perez, KJ ;
Tillberg, M ;
Brooks, JE ;
Garrels, JI .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :73-76
[3]   The continued evolution of two-hybrid screening approaches in yeast: how to outwit different preys with different baits [J].
Fashena, SJ ;
Serebriiskii, I ;
Golemis, EA .
GENE, 2000, 250 (1-2) :1-14
[4]  
FELLENBERG M, 2000, INTELL SYST MOL BIOL, V8, P152
[5]   A NOVEL GENETIC SYSTEM TO DETECT PROTEIN PROTEIN INTERACTIONS [J].
FIELDS, S ;
SONG, OK .
NATURE, 1989, 340 (6230) :245-246
[6]   Functional genomic analysis of C-elegans chromosome I by systematic RNA interference [J].
Fraser, AG ;
Kamath, RS ;
Zipperlen, P ;
Martinez-Campos, M ;
Sohrmann, M ;
Ahringer, J .
NATURE, 2000, 408 (6810) :325-330
[7]  
Fromont-Racine M, 2000, YEAST, V17, P95, DOI 10.1002/1097-0061(20000630)17:2<95::AID-YEA16>3.0.CO
[8]  
2-H
[9]   Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens [J].
FromontRacine, M ;
Rain, JC ;
Legrain, P .
NATURE GENETICS, 1997, 16 (03) :277-282
[10]   Life with 6000 genes [J].
Goffeau, A ;
Barrell, BG ;
Bussey, H ;
Davis, RW ;
Dujon, B ;
Feldmann, H ;
Galibert, F ;
Hoheisel, JD ;
Jacq, C ;
Johnston, M ;
Louis, EJ ;
Mewes, HW ;
Murakami, Y ;
Philippsen, P ;
Tettelin, H ;
Oliver, SG .
SCIENCE, 1996, 274 (5287) :546-&