Differential activities and regulation of Saccharomyces cerevisiae formin proteins Bni1 and Bnr1 by Bud6

被引:125
作者
Moseley, JB
Goode, BL
机构
[1] Brandeis Univ, Rosenstiel Ctr, Dept Biol, Waltham, MA 02454 USA
[2] Brandeis Univ, Rosenstiel Basic Med Sci Res Ctr, Waltham, MA 02454 USA
关键词
D O I
10.1074/jbc.M503094200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Formins are conserved proteins that nucleate actin assembly and tightly associate with the fast growing barbed ends of actin filaments to allow insertional growth. Most organisms express multiple formins, but it has been unclear whether they have similar or distinct activities and how they may be regulated differentially. We isolated and compared the activities of carboxyl-terminal fragments of the only two formins expressed in Saccharomyces cerevisiae, Bni1 and Bnr1. Bnr1 was an order of magnitude more potent than Bni1 in actin nucleation and processive capping, and unlike Bni1, Bnr1 bundled actin filaments. Profilin bound directly to Bni1 and Bnr1 and regulated their activities similarly. However, the cell polarity factor Bud6/Aip3 specifically bound to and stimulated Bni1, but not Bnr1. This was unexpected, since previous two-hybrid studies suggested Bud6 interacts with both formins. We mapped Bud6 binding activity to specific residues in the carboxyl terminus of Bni1 that are adjacent to its diaphanous autoregulatory domain ( DAD). Fusion of the carboxyl terminus of Bni1 to Bnr1 conferred Bud6 stimulation to a Bnr1-Bni1 chimera. Thus, Bud6 differentially stimulates Bni1 and not Bnr1. We found that Bud6 is up-regulated during bud growth, when it is delivered to the bud tip on Bni1-nucleated actin cables. We propose that Bud6 stimulation of Bni1 promotes robust cable formation, which in turn delivers more Bud6 to the bud tip, reinforcing polarized cell growth through a positive feedback loop.
引用
收藏
页码:28023 / 28033
页数:11
相关论文
共 49 条
[1]   Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain [J].
Alberts, AS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (04) :2824-2830
[2]   PURIFICATION, CHARACTERIZATION, AND IMMUNOFLUORESCENCE LOCALIZATION OF SACCHAROMYCES-CEREVISIAE CAPPING PROTEIN [J].
AMATRUDA, JF ;
COOPER, JA .
JOURNAL OF CELL BIOLOGY, 1992, 117 (05) :1067-1076
[3]   Aip3p/Bud6p, a yeast actin-interacting protein that is involved in morphogenesis and the selection of bipolar budding sites [J].
Amberg, DC ;
Zahner, JE ;
Mulholland, JW ;
Pringle, JR ;
Botstein, D .
MOLECULAR BIOLOGY OF THE CELL, 1997, 8 (04) :729-753
[4]  
Bähler J, 1998, YEAST, V14, P943, DOI 10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO
[5]  
2-Y
[6]   Formin-dependent actin assembly is regulated by distinct modes of Rho signaling in yeast [J].
Dong, YQ ;
Pruyne, D ;
Bretscher, A .
JOURNAL OF CELL BIOLOGY, 2003, 161 (06) :1081-1092
[7]   Structure determination and characterization of Saccharomyces cerevisiae profilin [J].
Eads, JC ;
Mahoney, NM ;
Vorobiev, S ;
Bresnick, AR ;
Wen, KK ;
Rubenstein, PA ;
Haarer, BK ;
Almo, SC .
BIOCHEMISTRY, 1998, 37 (32) :11171-11181
[8]   Formins: signaling effectors for assembly and polarization of actin filaments [J].
Evangelista, M ;
Zigmond, S ;
Boone, C .
JOURNAL OF CELL SCIENCE, 2003, 116 (13) :2603-2611
[9]   Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast [J].
Evangelista M. ;
Pruyne D. ;
Amberg D.C. ;
Boone C. ;
Bretscher A. .
Nature Cell Biology, 2002, 4 (1) :32-41
[10]   Bni1p, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis [J].
Evangelista, M ;
Blundell, K ;
Longtine, MS ;
Chow, CJ ;
Adames, N ;
Pringle, JR ;
Peter, M ;
Boone, C .
SCIENCE, 1997, 276 (5309) :118-122