Structural and kinetic determinants of aldehyde reduction by aldose reductase

被引:158
作者
Srivastava, S
Watowich, SJ
Petrash, JM
Srivastava, SK
Bhatnagar, A
机构
[1] Univ Texas, Med Branch, Dept Human Biol Chem & Genet, Galveston, TX 77555 USA
[2] Washington Univ, Dept Ophthalmol & Visual Sci & Genet, St Louis, MO 63110 USA
关键词
D O I
10.1021/bi981794l
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aldose reductase (AR) is a member of the aldo-keto reductase superfamily. Due to its ability to catalyze the formation of sorbitol from glucose during hyperglycemic and hypertonic stress, the aldose-reducing property of AR has been accepted as its main physiological and pathological function. Nonetheless, AR is a poor catalyst for glucose reduction and displays active-site properties unexpected of a carbohydrate-binding protein. We, therefore, examined the catalytic properties of AR with a series of naturally occurring aldehydes, compatible in their hydrophobicity to the large apolar active site of the enzyme. Our results show that recombinant human AR is an efficient catalyst for the reduction of medium- to long-chain unbranched saturated and unsaturated aldehydes. The enzyme displayed selective preference For saturated aldehydes, such as hexanal, and unsaturated aldehydes, such as trans-2-octenal and nonenal as well as their 4-hydroxy derivatives. Short-chain aldehydes such as propanal and acrolein were reduced less efficiently. Branched derivatives of acrolein or its glutathione conjugate (GS-propanal) were, however, reduced with high efficiency. In the absence of NADPH, the alpha, beta unsaturated aldehydes caused covalent modification of the enzyme. On the basis of electrospray mass spectrometric analysis of the wild-type and site-directed mutants of AR tin which the solvent exposed cysteines were individually replaced with serine), the site of modification was identified to be the active-site residue, Cys 298. The unsaturated aldehydes, however, did not modify the enzyme bound to NADPH and did not inactivate the enzyme during catalysis. Modeling studies indicate that the large hydrophobic active site of AR can accommodate a large number of aldehydes without changes in the structure of the binding site or movement of side chains, High hydrophobicity due to long alkyl chains or apolar substituents appears to stabilize the interaction of the aldehyde substrates with the enzyme. Apparently, such hydrophobic interactions provide substrate selectivity and catalytic efficiency of the order achievable by hydrogen bonding. Since several of the aldehydes reduced by AR are either environmental and pharmacological pollutants or products of lipid peroxidation, the present studies provide the basis of future investigations on the role of AR in regulating aldehyde metabolism particularly under pathological states associated with oxidative stress and/or aldehyde toxicity.
引用
收藏
页码:42 / 54
页数:13
相关论文
共 60 条
[1]   ACROLEIN-INDUCED OXYGEN RADICAL FORMATION [J].
ADAMS, JD ;
KLAIDMAN, LK .
FREE RADICAL BIOLOGY AND MEDICINE, 1993, 15 (02) :187-193
[3]  
ALSON TA, 1981, BIOCHEM PHARMACOL, V23, P2328
[4]   CYCLOPHOSPHAMIDE - REVIEW OF ITS MUTAGENICITY FOR AN ASSESSMENT OF POTENTIAL GERM-CELL RISKS [J].
ANDERSON, D ;
BISHOP, JB ;
GARNER, RC ;
OSTROSKYWEGMAN, P ;
SELBY, PB .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 1995, 330 (1-2) :115-181
[5]   Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein - A mechanism for the generation of highly reactive alpha-hydroxy and alpha,beta-unsaturated aldehydes by phagocytes at sites of inflammation [J].
Anderson, MM ;
Hazen, SL ;
Hsu, FF ;
Heinecke, JW .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (03) :424-432
[6]   DETECTION OF CARBONYL FUNCTIONS IN PHOSPHOLIPIDS OF LIVER-MICROSOMES IN CCL4-POISONED AND BRCCL3-POISONED RATS [J].
BENEDETTI, A ;
FULCERI, R ;
FERRALI, M ;
CICCOLI, L ;
ESTERBAUER, H ;
COMPORTI, M .
BIOCHIMICA ET BIOPHYSICA ACTA, 1982, 712 (03) :628-638
[7]   IDENTIFICATION OF 4-HYDROXYNONEAL AS A CYTO-TOXIC PRODUCT ORIGINATING FROM THE PEROXIDATION OF LIVER MICROSOMAL LIPIDS [J].
BENEDETTI, A ;
COMPORTI, M ;
ESTERBAUER, H .
BIOCHIMICA ET BIOPHYSICA ACTA, 1980, 620 (02) :281-296
[8]   CYTO-TOXIC ALDEHYDES ORIGINATING FROM THE PEROXIDATION OF LIVER MICROSOMAL LIPIDS - IDENTIFICATION OF 4,5-DIHYDROXYDECENAL [J].
BENEDETTI, A ;
COMPORTI, M ;
FULCERI, R ;
ESTERBAUER, H .
BIOCHIMICA ET BIOPHYSICA ACTA, 1984, 792 (02) :172-181
[9]   ALDOSE REDUCTASE - CONGENIAL AND INJURIOUS PROFILES OF AN ENIGMATIC ENZYME [J].
BHATNAGAR, A ;
SRIVASTAVA, SK .
BIOCHEMICAL MEDICINE AND METABOLIC BIOLOGY, 1992, 48 (02) :91-121
[10]   ALLYLAMINE CARDIOVASCULAR TOXICITY [J].
BOOR, PJ ;
HYSMITH, RM .
TOXICOLOGY, 1987, 44 (02) :129-145