Improving the Performance of Lithium-Sulfur Batteries by Conductive Polymer Coating

被引:776
作者
Yang, Yuan [2 ]
Yu, Guihua [1 ]
Cha, Judy J. [2 ]
Wu, Hui [2 ]
Vosgueritchian, Michael [1 ]
Yao, Yan [2 ]
Bao, Zhenan [1 ]
Cui, Yi [2 ,3 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
关键词
CATHODE MATERIALS; ENERGY-STORAGE; CARBON; NANORODS;
D O I
10.1021/nn203436j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable lithium-sulfur (Li-S) batteries hold great potential for next-generation high-performance energy storage systems because of their high theoretical specific energy, low materials cost, and environmental safety. One of the major obstacles for its commercialization is the rapid capacity fading due to polysulfide dissolution and uncontrolled redeposition. Various porous carbon structures have been used to improve the performance of Li-S batteries, as polysulfides could be trapped inside the carbon matrix. However, polysulfides still diffuse out for a prolonged time if there is no effective capping layer surrounding the carbon/sulfur particles. Here we explore the application of conducting polymer to minimize the diffusion of polysulfides out of the mesoporous carbon matrix by coating poly(3,4-ethylenedioxythiophene)- poly(styrene sulfonate) (PEDOT:PSS) onto mesoporous carbon/sulfur particles. After surface coating, coulomb efficiency of the sulfur electrode was improved from 93% to 97%, and capacity decay was reduced from 40%/100 cycles to 15%/100 cycles. Moreover, the discharge capacity with the polymer coating was ∼10% higher than the bare counterpart, with an initial discharge capacity of 1140 mAh/g and a stable discharge capacity of >600 mAh/g after 150 cycles at C/5 rate. We believe that this conductive polymer coating method represents an exciting direction for enhancing the device performance of Li-S batteries and can be applicable to other electrode materials in lithium ion batteries. © 2011 American Chemical Society.
引用
收藏
页码:9187 / 9193
页数:7
相关论文
共 32 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   New insights into the limiting parameters of the Li/S rechargeable cell [J].
Barchasz, Celine ;
Lepretre, Jean-Claude ;
Alloin, Fannie ;
Patoux, Sebastien .
JOURNAL OF POWER SOURCES, 2012, 199 :322-330
[3]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[4]   Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J].
Chen, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1184-A1189
[5]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[6]   Semi-Solid Lithium Rechargeable Flow Battery [J].
Duduta, Mihai ;
Ho, Bryan ;
Wood, Vanessa C. ;
Limthongkul, Pimpa ;
Brunini, Victor E. ;
Carter, W. Craig ;
Chiang, Yet-Ming .
ADVANCED ENERGY MATERIALS, 2011, 1 (04) :511-516
[7]  
Elschner A., 2010, PEDOT: Principles and Applications of an Intrinsically Conductive Polymer
[8]   Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy [J].
Greczynski, G ;
Kugler, T ;
Salaneck, WR .
THIN SOLID FILMS, 1999, 354 (1-2) :129-135
[9]  
Groenendaal BL, 2000, ADV MATER, V12, P481, DOI 10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO
[10]  
2-C