Structural and functional characterization of the mouse Sox9 promoter:: implications for campomelic dysplasia

被引:83
作者
Kanai, Y [1 ]
Koopman, P [1 ]
机构
[1] Univ Queensland, Ctr Mol & Cellular Biol, Brisbane, Qld 4072, Australia
关键词
D O I
10.1093/hmg/8.4.691
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mutations in SOX9 cause campomelic dysplasia (CD), a dominant skeletal dysmorphology and XY sex reversal syndrome. The CD phenotype is sensitive to dosage and expression levels of SOX9, Sox9 is expressed during chondrocyte differentiation and is up-regulated in male and down-regulated in female genital ridges during sex differentiation. In order to study the sex- and tissue-specific regulation of Sox9, we have defined the transcription start site and characterized the mouse Sox9 promoter region. The Sox9 proximal promoter shows moderately high nucleotide similarity between mouse and human, Transient transfection experiments using various deletion constructs of the 6.8 kb upstream region of mouse Sox9 fused to a luciferase reporter showed that the interval between 193 and 73 bp from the transcription start site is essential for maximal promoter activity in cell lines and in primary male and female gonadal somatic cells and liver cells isolated from 13.5 d.p.c. mouse embryos, This minimal promoter region was shown by DNase I hypersensitive site assay to be in an 'open' state of chromatin structure in gonads of both sexes, but not in the liver, Promoter activity was higher in testis than in ovary and liver, but deletion of the region from -193 to -73 bp abolished this difference, We conclude that the proximal promoter region is in part responsible for the sex- and tissue-specific expression of the Sox9 gene and that more distal positive and negative elements contribute to its regulation in vivo, consistent with the observation that translocations upstream from SOX9 can result in campomelic dysplasia.
引用
收藏
页码:691 / 696
页数:6
相关论文
共 25 条
[1]   SOX9 directly regulates the type-II collagen gene [J].
Bell, DM ;
Leung, KKH ;
Wheatley, SC ;
Ng, LJ ;
Zhou, S ;
Ling, KW ;
Sham, MH ;
Koopman, P ;
Tam, PPL ;
Cheah, KSE .
NATURE GENETICS, 1997, 16 (02) :174-178
[2]   Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer [J].
Bridgewater, LC ;
Lefebvre, V ;
de Crombrugghe, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (24) :14998-15006
[3]   NEW BEDFELLOWS IN THE MAMMALIAN SEX-DETERMINATION AFFAIR [J].
CAPEL, B .
TRENDS IN GENETICS, 1995, 11 (05) :161-163
[4]   ISOLATION OF BIOLOGICALLY-ACTIVE RIBONUCLEIC-ACID FROM SOURCES ENRICHED IN RIBONUCLEASE [J].
CHIRGWIN, JM ;
PRZYBYLA, AE ;
MACDONALD, RJ ;
RUTTER, WJ .
BIOCHEMISTRY, 1979, 18 (24) :5294-5299
[5]   Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds [J].
daSilva, SM ;
Hacker, A ;
Harley, V ;
Goodfellow, P ;
Swain, A ;
LovellBadge, R .
NATURE GENETICS, 1996, 14 (01) :62-68
[6]   CHROMATIN AS AN ESSENTIAL PART OF THE TRANSCRIPTIONAL MECHANISM [J].
FELSENFELD, G .
NATURE, 1992, 355 (6357) :219-224
[7]   CAMPOMELIC DYSPLASIA AND AUTOSOMAL SEX REVERSAL CAUSED BY MUTATIONS IN AN SRY-RELATED GENE [J].
FOSTER, JW ;
DOMINGUEZSTEGLICH, MA ;
GUIOLI, S ;
KWOK, C ;
WELLER, PA ;
STEVANOVIC, M ;
WEISSENBACH, J ;
MANSOUR, S ;
YOUNG, ID ;
GOODFELLOW, PN ;
BROOK, JD ;
SCHAFER, AJ .
NATURE, 1994, 372 (6506) :525-530
[8]  
Greenfield A, 1996, CURR TOP DEV BIOL, V34, P1, DOI 10.1016/S0070-2153(08)60707-3
[9]   Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL [J].
Heinemeyer, T ;
Wingender, E ;
Reuter, I ;
Hermjakob, H ;
Kel, AE ;
Kel, OV ;
Ignatieva, EV ;
Ananko, EA ;
Podkolodnaya, OA ;
Kolpakov, FA ;
Podkolodny, NL ;
Kolchanov, NA .
NUCLEIC ACIDS RESEARCH, 1998, 26 (01) :362-367
[10]   Identification of two Sox17 messenger RNA isoforms, with and without the high mobility group box region, and their differential expression in mouse spermatogenesis [J].
Kanai, Y ;
KanaiAzuma, M ;
Noce, T ;
Saido, TC ;
Shiroishi, T ;
Hayashi, Y ;
Yazaki, K .
JOURNAL OF CELL BIOLOGY, 1996, 133 (03) :667-681