Object tracking via appearance modeling and sparse representation

被引:67
作者
Chen, Feng [1 ]
Wang, Qing [1 ]
Wang, Song [2 ]
Zhang, Weidong [3 ]
Xu, Wenli [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
[2] Univ S Carolina, Dept Comp Sci & Engn, Columbia, SC 29208 USA
[3] NIH, Ctr Clin, Bethesda, MD 20892 USA
基金
中国国家自然科学基金;
关键词
Target variation; Online appearance modeling; Sparse representation; Bayesian inference;
D O I
10.1016/j.imavis.2011.08.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a robust tracking method by the combination of appearance modeling and sparse representation. In this method, the appearance of an object is modeled by multiple linear subspaces. Then within the sparse representation framework, we construct a similarity measure to evaluate the distance between a target candidate and the learned appearance model. Finally, tracking is achieved by Bayesian inference, in which a particle filter is used to estimate the target state sequentially over time. With the tracking result, the learned appearance model will be updated adaptively. The combination of appearance modeling and sparse representation makes our tracking algorithm robust to most of possible target variations due to illumination changes, pose changes, deformations and occlusions. Theoretic analysis and experiments compared with state-of-the-art methods demonstrate the effectivity of the proposed algorithm. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:787 / 796
页数:10
相关论文
共 23 条
[1]   Ensemble tracking [J].
Avidan, Shai .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (02) :261-271
[2]   RECURSIVE ESTIMATION OF MOTION, STRUCTURE, AND FOCAL LENGTH [J].
AZARBAYEJANI, A ;
PENTLAND, AP .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (06) :562-575
[3]  
Babenko B, 2009, PROC CVPR IEEE, P983, DOI 10.1109/CVPRW.2009.5206737
[4]  
Black M.J., 1996, Fourth European Conference on Computer 650 Vision (ECCV), P329
[5]  
Brand M, 2002, LECT NOTES COMPUT SC, V2350, P707
[6]  
Candes E.J., 2009, ROBUST PRINCIPAL COM
[7]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425
[8]   Online selection of discriminative tracking features [J].
Collins, RT ;
Liu, YX ;
Leordeanu, M .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (10) :1631-1643
[9]   Kernel-based object tracking [J].
Comaniciu, D ;
Ramesh, V ;
Meer, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (05) :564-577
[10]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338