Active site residues governing substrate selectivity and polyketide chain length in aloesone synthase

被引:39
作者
Abe, I
Watanabe, T
Lou, WW
Noguchi, H
机构
[1] Univ Shizuoka, Sch Pharmaceut Sci, Shizuoka 4228526, Japan
[2] Univ Shizuoka, COE21 Program, Shizuoka 4228526, Japan
关键词
type III polyketide synthase; chalcone synthase superfamily; aloesone synthase; chalcone synthase; engineered biosynthesis;
D O I
10.1111/j.1742-4658.2005.05059.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aloesone synthase (ALS) and chalcone synthase (CHS) are plant-specific type III poyketide synthases sharing 62% amino acid sequence identity. ALS selects acetyl-CoA as a starter and carries out six successive condensations with malonyl-CoA to produce a heptaketide aloesone, whereas CHS catalyses condensations of 4-coumaroyl-CoA with three malonyl-CoAs to generate chalcone. In ALS, CHS's Thr197, Gly256, and Ser338, the active site residues lining the initiation/elongation cavity, are uniquely replaced with Ala, Leu, and Thr, respectively. A homology model predicted that the active site architecture of ALS combines a 'horizontally restricting' G256L substitution with a 'downward expanding' T197A replacement relative to CHS. Moreover, ALS has an additional buried pocket that extends into the 'floor' of the active site cavity. The steric modulation thus facilitates ALS to utilize the smaller acetyl-CoA starter while providing adequate volume for the additional polyketide chain extensions. In fact, it was demonstrated that CHS-like point mutations at these positions (A197T, L256G, and T338S) completely abolished the heptaketide producing activity. Instead, A197T mutant yielded a pentaketide, 2,7-dihydroxy-5-methylchromone, while L256G and T338S just afforded a triketide, triacetic acid lactone. In contrast, L256G accepted 4-coumaroyl-CoA as starter to efficiently produce a tetraketide, 4-coumaroyltriacetic acid lactone. These results suggested that Gly256 determines starter substrate selectivity, while Thr197 located at the entrance of the buried pocket controls polyketide chain length. Finally, Ser338 in proximity of the catalytic Cys164 guides the linear polyketide intermediate to extend into the pocket, thus leading to formation of the hepataketide in Rheum palmatum ALS.
引用
收藏
页码:208 / 218
页数:11
相关论文
共 26 条
[1]   Engineered biosynthesis of plant polyketides: Chain length control in an octaketide-producing plant type III polyketide synthase [J].
Abe, I ;
Oguro, S ;
Utsumi, Y ;
Sano, Y ;
Noguchi, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (36) :12709-12716
[2]   A plant type III polyketide synthase that produces pentaketide chromone [J].
Abe, I ;
Utsumi, Y ;
Oguro, S ;
Morita, H ;
Sano, Y ;
Noguchi, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (05) :1362-1363
[3]   Benzalacetone synthase -: A novel polyketide synthase that plays a crucial role in the biosynthesis of phenylbutanones in Rheum palmatum [J].
Abe, I ;
Takahashi, Y ;
Morita, H ;
Noguchi, H .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (11) :3354-3359
[4]   The first plant type III polyketide synthase that catalyzes formation of aromatic heptaketide [J].
Abe, I ;
Utsumi, Y ;
Oguro, S ;
Noguchi, H .
FEBS LETTERS, 2004, 562 (1-3) :171-176
[5]   Site-directed mutagenesis of benzalacetone synthase -: The role of PHE215 in plant type III polyketide synthases [J].
Abe, I ;
Sano, Y ;
Takahashi, Y ;
Noguchi, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (27) :25218-25226
[6]   Substrate specificity of chalcone synthase: Enzymatic formation of unnatural polyketides from synthetic cinnamoyl-CoA analogues [J].
Abe, I ;
Morita, H ;
Nomura, A ;
Noguchi, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (45) :11242-11243
[7]   p-Coumaroyltriacetic acid synthase, a new homologue of chalcone synthase, from Hydrangea macrophylla var. thunbergii [J].
Akiyama, T ;
Shibuya, M ;
Liu, HM ;
Ebizuka, Y .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1999, 263 (03) :834-839
[8]  
[Anonymous], 1999, NAT PROD CHEM
[9]   Crystal structure of a bacterial type III polyketide synthase and enzymatic control of reactive polyketide intermediates [J].
Austin, MB ;
Izumikawa, M ;
Bowman, ME ;
Udwary, DW ;
Ferrer, JL ;
Moore, BS ;
Noel, JP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (43) :45162-45174
[10]   An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases [J].
Austin, MB ;
Bowman, ME ;
Ferrer, JL ;
Schröder, J ;
Noel, JP .
CHEMISTRY & BIOLOGY, 2004, 11 (09) :1179-1194